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Abstract

The traffic assignment problem is primarily concerned with the study of user equilibrium and system

optimum and it is often assumed that travelers are perfectly rational and have a complete knowledge

of network conditions. However, from an empirical standpoint, when a large number of selfish users

travel in a network, the chances of reaching an equilibrium are slim. User behavior in such settings can

be modeled using probabilistic route choice models which define when and how travelers switch paths.

This approach results in stochastic processes with steady state distributions containing multiple states

in their support. In this paper, we propose an average cost Markov decision process model to reduce

the expected total system travel time of the logit route choice model using dynamic pricing. Existing

dynamic pricing methods in day-to-day network models are formulated in continuous time. However, the

solutions from these methods cannot be used to set tolls on different days in the network. We hence study

dynamic tolling in a discrete time setting in which the system manager collects tolls based on the state

of the system on previous day(s). In order to make this framework practical, approximation schemes for

handling a large number of users are developed. A simple example to illustrate the application of the

exact and approximate methods is also presented.

Keywords: day-to-day dynamics; dynamic tolls; average cost MDP; state space aggregation

1 Introduction
Urban transportation planning is traditionally carried out using a four-step process. The first three steps

are used to estimate the number of travelers/users, their origin-destination (OD) pairs, and their mode of

travel. The final step, also called route choice or traffic assignment, involves assigning travelers to different

routes. This assignment procedure is done assuming that traffic networks are in a state of user equilibrium

(UE) or Nash equilibrium (NE) due to selfish choices made by travelers (Wardrop, 1952; Nash, 1951). Many

efficient algorithms exist for finding the UE solution to the traffic assignment problem (TAP) (Larsson and

Patriksson, 1992; Jayakrishnan et al., 1994; Bar-Gera, 2002; Dial, 2006; Mitradjieva and Lindberg, 2013).

Another state typically of interest is called the system optimum (SO) in which the sum total of travel time

experienced by all travelers, also called the total system travel time (TSTT), is minimized.

In UE models, it is often assumed that travelers are rational and have a perfect knowledge of the network

topology and its response to congestion. However, when a large number of travelers interact, the extent

of reasoning required to arrive at an equilibrium solution is beyond one’s human ability. Two alternate

concepts which do not rely on these assumptions exist in literature − stochastic user equilibrium (SUE)

and day-to-day dynamic models or Markovian traffic assignment models. Both these approaches infuse

uncertainty into travelers’ choices and the uncertainty is assumed to result from randomness in users’
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perceived travel times. However, they differ from each other in a vital way. Stochastic user equilibrium

models (Dial, 1971; Daganzo and Sheffi, 1977; Sheffi, 1985), which are formulated as fixed point problems,

define equilibrium as a state in which users’ perceived travel times are minimized.

On the other hand, day-to-day models (Cascetta, 1989; Friesz et al., 1994; Cantarella and Cascetta, 1995)

are deterministic or stochastic dynamic processes in which states/feasible flows evolve over time. In discrete

time models with stochastic dynamics, travelers select paths each day based on historical information of

network travel times and a probabilistic route choice mechanism which induces transitions from one state

to another. Under certain mild conditions, the stochastic process can be modeled as a Markov chain with

a unique steady state distribution. Thus, although the system is never at rest, it attains an ‘equilibrium’

in the probability distribution of flow patterns.

Since paths are selected randomly on each day, the total system travel time is no longer deterministic but

is a random variable. Using the steady state distribution of the stochastic process, one can compute the

expected TSTT, which can be used as a metric for studying the extent of congestion in the network. An

immediate question of interest is the following. Just as congestion pricing is used to achieve SO flows in

traffic assignment, can a system manager do the same to reduce the expected TSTT? Traditional congestion

pricing is based upon marginal prices (Pigou, 1920). Congestion pricing helps reduce the TSTT as the

UE flow on the network with marginal tolls results in a SO flow pattern in the original network. However,

in a day-to-day setting, marginal prices are of little relevance. In fact, in some cases, they can result in

increased TSTT as illustrated by the following example.

O D 

𝑡1 𝑥1 =  4𝑥1 

𝑡2 𝑥2 =  8 

Figure 1: Sub-optimality of marginal prices in a day-to-day setting

Consider two travelers from O to D in the network shown in Figure 1. Let the vector (x1, x2) denote the

state of the system, where x1 and x2 denotes the number of travelers on the top and the bottom path

respectively. The above system has three states (2, 0), (0, 2), and (1, 1), which we will refer to as states 1,

2 and 3 respectively. It is easy to verify that state 1 is a NE and state 3 is SO. Suppose both travelers use

the logit choice model to select paths on each day, in which the probability of choosing the top and bottom

paths are exp(−t1(x1))
exp(−t1(x1))+exp(−t2(x2)) and exp(−t2(x2))

exp(−t2(x2))+exp(−t2(x2)) , where t1(x1) and t2(x2) represents the travel

times as a function of the previous day’s flow. The stochastic process is Markovian and the steady state

probabilities of observing states 1, 2, and 3 are 0.5654, 0.1414, and 0.2932 respectively. Thus the expected

TSTT is 16(0.5654) + 16(0.1414) + 12(0.2932) = 14.8272. Now suppose we price the network using

marginal tolls (4 units on the top link and no toll on the bottom one) and assume that both travelers now

2



replace the travel time functions in the logit choice model with generalized costs (travel time + toll). The

steady state distribution of the Markov chain for states 1, 2, and 3 is 0.467, 0.467, and 0.066 respectively

and the expected TSTT is 15.736 which is higher than before.

Selecting the right tolls in a day-to-day setting would thus require us to estimate the steady state distribu-

tion for each admissible toll pattern and select one that minimizes the expected TSTT. However, one can

do better than such static tolling schemes by dynamically varying tolls. While dynamic tolling has received

some attention in literature, most existing research focuses primarily on continuous time models. These

studies use control theory to determine the optimal time varying toll as the system state evolves with time

according to some deterministic dynamic (Friesz et al., 2004; Xiao et al., 2014). However, continuous time

formulations are not really ‘day-to-day’ models and their solutions cannot be used to dynamically price a

network over different days. A major contribution of this paper is in addressing this gap by proposing a

dynamic day-to-day pricing mechanism in a discrete time setting that computes the optimal link tolls to

reduce the expected TSTT. We formulate this problem as an infinite horizon average cost Markov deci-

sion process (MDP) and seek stationary policies that inform us the tolls as a function of the state of the

system. In other words, the system manager observes the state or flow pattern and sets tolls, which are

then revealed to the travelers. Travelers pick paths the next day in a probabilistic manner depending on

the current state and revealed tolls.

Tolls in real world transportation networks are largely levied on freeways and hence the path choice set

for travelers may be assumed to be small. However, even in sparse networks, presence of a large number

of travelers results in an exponential number of states. Therefore, as with most MDPs, we are faced with

the curse of dimensionality that prevents us from using this model on practical networks. To address this,

we also propose simple approximation techniques using state space aggregation to handle instances with

large number of travelers and demonstrate its performance on a small test network. For most part, we

will restrict our attention to a single OD pair and the logit choice model for route selection. Extensions to

more general settings are conceptually straightforward.

The rest of this paper is organized as follows. In Section 2, we describe the two approaches (discrete and

continuous) to model the evolution of traffic as a stochastic process. We also discuss existing literature on

dynamic pricing. Section 3 describes an average cost MDP model for finding a dynamic pricing policy that

minimizes the expected TSTT. In Section 4, we propose an approximate dynamic programming method

using state space aggregation and test its performance on a simple network in Section 5. In Section 6

we formulate other variant MDPs such as those that optimize the probability of convergence to a flow

solution and those that involve incentives. Finally, we summarize our findings and discuss pointers for

future research on this topic.

2 Literature review
Day-to-day traffic models can be classified into two categories − discrete and continuous. Both these

categories of models appear in literature in two flavors − deterministic and stochastic. The nomenclature

is sometimes misleading as continuous time route switching processes are also referred to as ‘day-to-day’
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models. In this section we review existing literature on these models and dynamic pricing. The reader

may refer to Watling and Hazelton (2003) and Watling and Cantarella (2013) for a more comprehensive

summary of day-to-day dynamics and for their connections with UE and SUE.

2.1 Discrete time day-to-day models

Cascetta (1989) formulated the evolution of traffic as a discrete time Markov chain. The number of travelers

was assumed to be finite. Extensions to model an infinite number of travelers also exist (see Watling and

Cantarella, 2013). Under the following assumptions on the path choice probabilities, it was shown that

the stochastic process has a unique steady state distribution: (1) time invariant path choice probabilities,

(2) the probability of selecting any path between an OD pair is non-negative, and (3) the probability of

choosing a path depends on the states (flow patterns) of the system on at most m previous days (which

ensures that the process is m-dependent Markovian). Commonly used path choice models in literature

include the logit and probit choice models. In logit choice models, the probability of selecting a path is

additionally assumed to depend on a parameter θ which defines the extent of making a mistake or the

extent of irrationality.

This model was extended by Cascetta and Cantarella (1991) to account for within day fluctuations in

traffic. Travelers were assumed to have access to travel time information in periods prior to their departure

and condition their choices based on historic day-to-day information and also within-day information.

Watling (1996) studied day-to-day models for asymmetric traffic assignment problems (i.e., for ones in

which the Jacobian of the cost functions is not symmetric and multiple equilibria may exist). The stationary

distributions in such problems were found to have multiple modes at the stable equilibria or a unimodal

shape if one of the equilibrium dominates the others.

Several efforts have been made to estimate the expected route flows and the correlations among flow

patterns in day-to-day models (Davis and Nihan, 1993; Hazelton and Watling, 2004) as the computation of

steady state distributions of Markov chains for cases with a large number of travelers can be intensive even

when using Monte Carlo simulations. For networks with a large number of travelers, the expected flows

may be approximated to an SUE solution (Davis and Nihan, 1993). Discrete time day-to-day models (see

Cantarella and Cascetta, 1995) with deterministic dynamics have also been studied in literature. These

models employ a deterministic mapping, e.g., best response mechanism (see Brown, 1951; Robinson, 1951),

that provides the state of the system on the next day as a function of the flows observed on previous days.

2.2 Continuous time day-to-day models

Continuous time day-to-day dynamics may also be modeled as continuous time Markov chains in a manner

similar to discrete time day-to-day models. This approach is relatively more common in behavioral eco-

nomics (see Sandholm, 2010, Chapters 10-12). Travelers are assumed to be atomic (i.e., flows are integral)

and their choices are characterized by − inertia, myopic behavior, and mutations. Inertia implies that trav-

elers do not frequently change paths but do so only when they are given a strategy revision opportunity,

which presents itself at random times. The sojourn times for each traveler (time between two successive

revision opportunities) are assumed to be exponentially distributed. Myopic behavior implies that travelers
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choose actions to optimize their present travel times rather than infinite-horizon discounted travel times.

Mutations reflect the assumption that travelers may “tremble” or make mistakes while choosing a path.

Depending on the probabilities that are assigned to the strategies that are not best responses, different

learning algorithms can be constructed (Young, 1993, 2004; Kandori et al., 1993; Kandori and Rob, 1995;

Blume, 1996). Under certain assumptions, existence of a unique steady state/limiting distribution can

be ensured. Blume (1996) showed that for logit choice models, as θ tends to zero, the set of states with

positive limiting probabilities (called a stochastically stable set) coincides with the set of NE. Further, for

cases with a large number of players, it may be shown that deterministic and stochastic approaches are

equivalent to each other when observed for a finite period of time (Sandholm, 2010).

The deterministic version of continuous day-to-day models assumes that the state of the system evolves

with time as an ordinary differential equation and has been widely studied in transportation literature.

Travelers are usually assumed to be infinitely divisible (non-atomic). One of the most commonly used

dynamic is the Smith’s dynamic (Smith, 1979) in which users shift between routes at a rate proportional

to the difference between their current travel times. Other deterministic dynamics that have appeared in

literature in transportation and behavioral economics include replicator dynamics (Taylor and Jonker, 1978;

Smith and Price, 1973), projection dynamics (Nagurney and Zhang, 1997), and Brown-von Neumann-Nash

dynamic (Brown and Von Neumann, 1950). The common objective in studying these models is to verify if

the rest points of the dynamic are unique and coincide with the UE solution. Most deterministic dynamical

systems are formulated using path flows. However, from a practical standpoint, as the number of paths

may increase exponentially with the network size, researchers have recently developed more practical link

based dynamic models (Zhang et al., 2001; He et al., 2010; Han and Du, 2012; Guo et al., 2015). In this

context, Yang and Zhang (2009)and Guo et al. (2013) proposed a class of dynamic route choice models

called rational adjustment processes (whose stationary states are at UE) in continuous and discrete time

settings respectively.

2.3 Dynamic pricing

A considerable amount of literature on dynamic tolling exists. In the context of day-to-day models, existing

methods usually focus on continuous time versions and are formulated as optimal control problems (Wie

and Tobin, 1998; Friesz et al., 2004; Yang, 2008). The system is assumed to be tolled for a finite period of

time and, using boundary conditions, it is ensured that the network remains in a SO state at the end of

the finite time horizon. Friesz et al. (2004) developed such a pricing model in which the objective was to

maximize net social benefits while ensuring that a minimum revenue target is met. Several other alternate

objectives may be modeled using this framework such as minimizing travel costs and minimizing the time

required to guide the system to an SO state (Xiao et al., 2014). Other related pricing literature includes

studies to achieve SO flows using static tolls when users route according to SUE (Smith et al., 1995;

Yang, 1999); piecewise constant pricing mechanisms that ensure the convergence of multiplicative update

rule and replicator dynamics to an SO state (Farokhi and Johansson, 2015); self-learning and feedback

learning controller for tolling managed lanes (Yin and Lou, 2009); and time-varying tolls in dynamic traffic

assignment or within-day dynamic models (Joksimovic et al., 2005).
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2.4 Summary

As noted in the previous subsections, there is a huge body of literature on different versions of day-to-day

dynamic models. The congestion pricing methods developed in this paper optimize network performance

in the presence of daily fluctuation in traffic flows. Hence, we use a discrete time stochastic day-to-day

dynamic model along the lines of those developed by Cascetta (1989).

3 Dynamic pricing – Average cost MDP formulation
In this section, we introduce the four components of the MDP − the state space, the action space, transition

probabilities and the costs and discuss a commonly used method for solving it.

3.1 Preliminaries

We make the following assumptions for the day-to-day traffic model with tolls:

1. The network has a single origin-destination (OD) pair with r routes. The formulation may be

extended to include multiple OD pairs but has been avoided to simplify the notation.

2. There are a total of n travelers (assumed atomic and finite). Throughout this paper, the number of

travelers will be assumed to be fixed. Although finiteness is limiting because of demand uncertainty

in networks, the treatment of models with elastic demand is a topic in itself and can be justly studied

only if the problem with a fixed number of travelers is fully understood.

3. Tolls can be collected in discrete amounts and along routes in the network. The discretization is

mainly to assist the computation of optimal tolling policies and is realistic since currencies have

a lowest denomination. The assumption that tolls are collected at a route level is not restrictive

because the problem may be easily reformulated using link level tolls (in which case the action space

is a vector of link tolls).

4. Users make route choice decisions on a day-to-day basis based on a given route choice model in which

travel times are replaced by generalized costs. Decisions are conditioned on the previous day’s travel

times. All travelers are also assumed to be homogenous with the same value of travel time.

5. The objective of the system manager is to minimize the expected TSTT. Other objectives that may

be of interest are discussed in Section 6.1.

State space

Let R = {1, . . . , r} denote the set of routes. We define the state space S as the set of all feasible route

flow solutions, i.e.,
{

(x1, x2, . . . , xr) ∈ Zr+ :
∑

i∈R xi = n
}

. The vector x = (x1, x2, . . . , xr) ∈ S contains the

flows on each of the paths between the OD pair. Since we are dealing with a network with r routes and n

travelers, there are a total of ( n+r−1
n ) feasible flow solutions/states. We use xk to denote the state of the

system at time step/day k.

Action space

We will represent an action using a toll vector u = (u1, u2, . . . , ur), which denotes the tolls on the paths

in the network. Assume that the action space at state x is U(x). Also suppose that the action space for

each state x is the Cartesian product {τ1, τ2, . . . , τl}r where τ1, . . . , τl are some allowable prices.
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Transition probabilities

Let ti : S → R be the travel time on path i ∈ R as a function of the state. We assume that the travel

time functions are bounded. No further assumptions such as separability or monotonicity are needed. We

suppose that the path choice probability qr(x,u) for each traveler is a function of x and u and is positive

for all routes for all state-action pairs. We further suppose that each traveler independently chooses a path

using this distribution. Thus, the probability of moving from state x to y when action u ∈ U(x) is taken

in state x is given by the following multinomial probability distribution

Pr [y = (y1, y2, . . . , yr)|x,u] = pxy(u) =
n!

y1!y2! . . . yr!
q1(x,u)y1 . . . qr(x,u)yr (1)

If travelers use the logit choice model with parameter θ, we may write qr(x,u) as follows:

qr(x,u) =
e−θ[tr(x)+ur]∑r
i=1 e

−θ[ti(x)+ui]
(2)

where ti(x) + ui is the generalized cost on route i. Then, the transition probabilities take the form

pxy(u) =
n!

y1!y2! . . . yr!

(
e−θ[t1(x)+u1]∑r
i=1 e

−θ[ti(x)+ui]

)y1
. . .

(
e−θ[tr(x)+ur]∑r
i=1 e

−θ[ti(x)+ui]

)yr
(3)

=
n!

y1!y2! . . . yr!

r∏
j=1

(
e−θ[tj(x)+uj ]∑r
i=1 e

−θ[ti(x)+ui]

)yj
(4)

Remark. Route choice processes in day-to-day models can be made more general than what has been

described above. The system state on day k usually includes historical information and is defined as a

vector of flows on previous m days
(
xk,xk−1, . . . ,xk−(m−1)

)
. Travelers are assumed to compute perceived

travel times t̃i(.) for each path i between their OD pair as the sum of a weighted average of travel times on

route i on previous m days and a random term that accounts for perception errors or unobserved factors.

t̃i
(
(xk, . . . ,xk−(m−1))

)
=

m−1∑
j=0

wjti (xk−j) + ε̃ (5)

The terms wj represent the weights associated with the observed travel times on previous days. The proba-

bility of choosing path i is thus given by

Pr
[
t̃i
(
(xk, . . . ,xk−(m−1))

)
< t̃i′

(
(xk, . . . ,xk−(m−1))

)
∀ i 6= i′, i′ ∈ R

]
(6)

Depending on the assumed distributions of the error terms, different route choice models such as logit and

probit may be obtained. Logit choice models are relatively widely used as the path choice probabilities have

a closed form expression.

Costs

Let g(x,u) denote the expected cost incurred every time decision u is taken in state x. In order to minimize

the expected TSTT, we define the cost as g(x,u) =
∑

y∈S pxy(u)TSTT(y), where TSTT(y) is the total

system travel time of state y. Note that g(x,u) is bounded because the travel time functions ti are assumed

7



to be bounded.

3.2 Objective and algorithms

The system manager observes the state on a particular day and chooses the tolls based on some policy(
µ(x)

)
x∈S , which specifies the action µ(x) ∈ U(x) to be taken when in state x and reveals them to the

travelers before the next day. Travelers make decisions based on the previous day’s state and the revealed

tolls as shown in Figure 2.

Day 𝑘 Day 𝑘 + 1 

Travelers make decisions 𝒙𝑘  

Tolls for the next day are decided 𝝁 𝒙𝑘  

Travelers make decisions 𝒙𝑘+1  
based on 𝒙𝑘  and 𝝁 𝒙𝑘  

Figure 2: Timeline for the pricing mechanism

Decisions are made over an infinite horizon but at discrete intervals of time 0, 1, 2, . . . , k, . . . . Let Jµ(x) be

the average cost per stage or the expected TSTT for policy µ assuming that the system starts at state x,

i.e., x0 = x. Thus, we may write

Jµ(x) = lim
K→∞

1

K
E

{
K−1∑
k=0

g (xk,µ(xk))
∣∣∣x0 = x

}
(7)

Remark. A majority of infinite horizon MDPs are formulated as discounted cost problems. In this paper,

assuming that the system manager minimizes the expected TSTT, we use the average cost version instead

for a couple of reasons. First, average cost MDPs are mathematically attractive as their objective values,

as we will see shortly, do not depend on the initial state of the system. On the other hand, discounted cost

problems are often extremely sensitive to both initial conditions and the discount factor.

Second, and more importantly, discounted cost models are appropriate when the costs associated with state-

action pairs have an economic value. In such cases, the discount factor can simply be set to the interest

rate. Although estimating the monetary value of system wide travel time savings in transportation networks

appears difficult, one may still use the discounted cost framework to place more weight on near-term savings

in TSTT, especially when the Markov chains associated with optimal average cost policies visits states with

high TSTT initially and converges to states with low TSTT only after a long time. However, for the problem

instances we tested (see Section 5), the Markov chains associated with the optimal policies were found to

mix quickly and the time averages of TSTT over a finite number of initial days for different sample paths

were fairly close to the optimal expected TSTT, and thereby did not motivate the need for discounting.
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We restrict our attention to time-invariant or stationary policies (since we are only dealing with stationary

policies, the above limit always exists). The advantages of stationary policies are two-fold. First, an

optimal stationary policy is relatively easy to compute. Second, since the policies do not directly depend

on the day k, implementing a stationary policy is much easier. Note that stationarity of policies does not

imply that the tolls are static. It implies that the tolls are purely a function of the state and as the states

of the network vary over time, so do the tolls. We seek an optimal policy µ∗ such that

J∗(x) ≡ Jµ∗(x) = min
µ∈Π

Jµ(x) (8)

where Π denotes the set of all admissible policies. We now state some standard results concerning average

cost per stage MDPs that are relevant to the current paper. A more detailed account of these can be found

in Puterman (2005) and Bertsekas (2007).

Definition 1. For a given stationary policy µ, state y is said to be accessible from x, and is denoted by

x→ y, if for some k > 0, y can be reached from x with positive probability in k days, i.e., Pr[xk = y|x0 =

x,µ] > 0. Further, if x → y and y → x, we say that x communicates with y. If y is not accessible from

x, we denote it by x 9 y.

Definition 2. For a given stationary policy µ, a subset of states S′ ⊆ S is a recurrent class or a closed

communicating class if

(a) All states in S′ communicate with each other.

(b) x ∈ S′ and y /∈ S′ ⇒ x 9 y.

Definition 3. An MDP is said to be ergodic if the Markov chain induced by every deterministic stationary

policy is irreducible, i.e., has a single recurrent class.

For the logit choice model described in this paper, the path choice probabilities and the transition prob-

abilities between every pair of states, defined using (2) and (4) respectively, are positive for all policies.

Thus, using Definitions 1 and 2, we conclude that all states communicate with each other and belong to a

single recurrent class. Therefore, by Definition 3, the MDP is ergodic.

Proposition 1 (Equal costs). If an MDP is ergodic then the average cost problem has equal costs, i.e,

J∗(x) = J∗(y), ∀x,y ∈ S (9)

Proof. Consider a stationary policy µ. Clearly, the cost incurred up to a finite number of stages do not

matter when computing the expected TSTT Jµ(x) under the policy µ assuming that we start at state x,

i.e., suppose K ′ <∞, then

lim
K→∞

1

K
E

{
K′−1∑
k=0

g (xk,µ(xk))
∣∣∣x0 = x

}
= 0 (10)

Suppose the random variable K̃ represents the time taken for the Markov chain to move from x to y for

the first time under policy µ. Since the state y is accessible from x under the policy µ, it follows that
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E[K̃] <∞. Therefore, using (7),

Jµ(x) = lim
K→∞

1

K
E


K̃−1∑
k=0

g (xk,µ(xk))
∣∣∣x0 = x

+ lim
K→∞

1

K
E


K−1∑
k=K̃

g (xk,µ(xk))
∣∣∣xK̃ = y

 (11)

= 0 + lim
K→∞

1

K
E


K−1∑
k=K̃

g (xk,µ(xk))
∣∣∣xK̃ = y

 (12)

= Jµ(y) (13)

Since the expected TSTT is independent of the initial state for every stationary policy, the same is true

for the optimal policy. Hence, J∗(x) = J∗(y), ∀x,y ∈ S. �

Thus, Proposition 1 implies that the optimal expected TSTT is independent of the initial conditions, i.e.,

state of the system on day 0.

Proposition 2 (Bellman’s equation). Suppose λ∗ = J∗(x). Then exists h∗(x) ∀x ∈ S (not necessarily

unique) that satisfies the following Bellman’s equation

λ∗ + h∗(x) = min
u∈U(x)

{
g(x,u) +

∑
y∈S

pxy(u)h∗(y)

}
∀x ∈ S (14)

Also, if some λ and a vector of h’s satisfy (14), then λ is the optimal average cost per stage. Further, a

policy µ∗(x) defined as follows is optimal

µ∗(x) ∈ argmin
u∈U(x)

{
g(x,u) +

∑
y∈S

pxy(u)h∗(y)

}
∀x ∈ S (15)

Proof. See Bertsekas (2007). �

Since the problem has a finite state space and a finite action space, the optimal J values and policies can be

computed using value iteration, policy iteration or linear programming (LP). The value iteration method

updates J ’s in the following manner and λ∗ = J∗(x) is obtained by evaluating limk→∞
Jk(x)
k (k denotes

the iteration number).

Jk+1(x) = min
u∈U(x)

{
g(x,u) +

∑
y∈S

pxy(u)Jk(y)

}
∀x ∈ S (16)

where J0(x) can be initialized to any arbitrary value for all x ∈ S. However, such an iterative procedure

can lead to numerical instability as Jk(x)→∞. This issue is typically avoided using relative value iteration

in which we define a differential cost vector hk as hk(x) = Jk(x) − Jk(s) ∀x ∈ S, where s is an arbitrary

state in S. Hence for all x ∈ S,

hk+1(x) = Jk+1(x)− Jk+1(s) (17)

= min
u∈U(x)

{
g(x,u) +

∑
y∈S

pxy(u)Jk(y)

}
− min

u∈U(s)

{
g(s,u) +

∑
y∈S

psy(u)Jk(y)

}
(18)
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= min
u∈U(x)

{
g(x,u) +

∑
y∈S

pxy(u)hk(y)

}
− min

u∈U(s)

{
g(s,u) +

∑
y∈S

psy(u)hk(y)

}
(19)

The iterates generated by (19) and λk+1 defined according to (20) converge and satisfy the Bellman’s

equation as defined in Proposition 2 (Puterman, 2005; Bertsekas, 2007).

λk+1 = min
u∈U(s)

{
g(s,u) +

∑
y∈S

psy(u)hk+1(y)

}
(20)

The pseudocode for relative value iteration is summarized in Algorithm 1. Let ε > 0 denote the required

level of convergence. Suppose that M > ε and sp(·) represents the span semi-norm which is defined as

sp(h) = maxx∈S h(x) −minx∈S h(x). The span semi-norm is used to compute the difference between the

upper and lower bounds of the optimal expected TSTT λ∗.

Algorithm 1 Pseudocode for relative value iteration

Step 1:
Initialize h0(x)∀x ∈ S to any arbitrary values
error ←M
k ← 0

Step 2:
while error > ε do

for each x ∈ S do

(Thk)(x)← min
u∈U(x)

{
g(x,u) +

∑
y∈S

pxy(u)hk(y)

}
hk+1(x)← (Thk)(x)− (Thk)(s)

end for
if k ≥ 1 then error ← sp(Thk − Thk−1)
k ← k + 1

end while

Step 3: Choose µ∗(x) ∈ arg min
u∈U(x)

{
g(x,u) +

∑
y∈S

pxy(u)(Thk−1)(y)

}
∀x ∈ S

4 Approximate dynamic programming – State space aggregation
The model formulated in the previous section, while being theoretically appealing, may not be suited for

practical implementation especially when there are a large number of travelers or if there are many routes

to choose from. For instance if 1000 travelers make route choices each day in a network with 10 routes,

the size of the state space is equal to
(

1000+10−1
1000

)
≈ 1021. The problem further gets compounded when we

extend the model to multiple OD pairs. In this section, we address this issue by developing approximation

methods that involve state space aggregation1.

1State space aggregation was preferred over other approximate dynamic programming methods such as rollout algorithms
(Bertsekas et al., 1997) and approximate linear programming (de Farias and Van Roy, 2006) because it avoids the enumeration
of states and the computation of multinomially distributed transition probabilities.
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When dealing with networks with a large number of travelers, several states may not be significantly

different from each other. For instance, if there are a 1000 travelers in a network with two parallel links,

the states (1000,0) and (999,1) are likely to be indistinguishable both in terms of the associated travel

times and the optimal policies. This motivates us to develop approximate dynamic programming methods

by aggregating states in order to reduce the computational times. Thus, we need to address the following

questions: (1) how should states be aggregated? and (2) what are the transition probabilities between

states in the aggregated system?

A simple attempt to aggregate states may be made using intervals of some chosen width. For instance,

in the network with two parallel links, we may group states for which the flow on one of the links (say

the top link) is between 0 and 10, 11 and 20 and so on. For any such aggregation/partition of the set S,

transition probabilities between aggregated states may be computed by adding the transition probabilities

between every pair of original states within two aggregated states. Although we save on the time required

to compute the optimal policy, we would still have to enumerate all states and calculate the transition

probabilities associated with states in the original state space as given by the expressions derived in (4).

Alternately, we can exploit the fact that for large n, a multinomial distributed random variable may

be approximated to have a multivariate normal distribution (Sheffi, 1985). In order to do so, we first

assume that the state space is continuous by supposing that travelers are infinitesimally divisible (non-

atomic). Let y represent a vector of random variables (path flows) when action u is taken in state x.

In (1) we saw that y|x,u is multinomially distributed. When n is large, we can approximate it with the

multivariate normal y|x,u ∼ N (α(x,u),Σ(x,u)), where α(x,u) =
(
nq1(x,u), nq2(x,u), . . . , nqr(x,u)

)
and Σ(x,u) = [Σij(x,u)] is the covariance matrix with elements given by

Σij(x,u) =

−nqi(x,u)qj(x,u) if i 6= j

nqi(x,u)(1− qi(x,u)) otherwise
(21)

The density function of y is given by

f(y|x,u) =
1√

(2π)r det Σ(x,u)
exp

(
−1

2
(y −α(x,u))T Σ(x,u)−1 (y −α(x,u))

)
(22)

State space

The theory of infinite horizon MDPs is well established for problems with finite state and action spaces. In

order to take advantage of existing methods to solve them, we construct a finite number of states from a con-

tinuous state space by generalizing the idea of aggregating states using intervals. Let us first define the set

I =
{

[0, nδ ], [nδ ,
2n
δ ], . . . , [ (δ−1)n

δ , n]
}

. Notice that Ir is the set of all hypercubes formed by dividing the flow

on each route into δ intervals. We then consider the space S = {X ∈ Ir : |X ∩ {x ∈ [0, n]r :
∑r

i=1 xi = n}| > 1},
where | · | represents the cardinality of a set. Figure 3 helps visualize this construct. Suppose there are 100

travelers and three routes, and the flows on each route are represented on the three axes. Assume that we

divide the each axis into 10 intervals. This divides the space [0, 100]3 into 1000 hypercubes as shown in

Figure 3a. We then pick only those hypercubes which intersect the set of feasible flows (i.e, the simplex
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x1 + x2 + x3 = 100) at more than one point, which gives the 100 hypercubes in Figure 3b. We exclude

the hypercubes that intersect the simplex at exactly one point as we can always find another hypercube

belonging to S that contains the point.

(a) Set of all hypercubes Ir (b) Hypercubes that intersect the simplex

Figure 3: State space for the approximate methods

Let the state space for the approximate method be S. For any state X ∈ S, let Xc ∈ Rr be the center

of the hypercube X . We evaluate the properties of the state X such as the TSTT at this point. Notice

that the point Xc may or may not satisfy the flow conservation constraint depending on the choice of r

and δ. However, when we consider a sufficiently large number of intervals (δ), Xc may be assumed to be

close enough to the simplex so that the errors in approximating the TSTT are small. We now define the

remaining components of the MDP.

Action space

The action space for the approximate MDP at each state is same as before, i.e., U(X ) = {τ1, τ2, . . . , τl}r.

Transition probabilities

Let the transition probabilities of moving from state X to Y under action u be denoted as pXY(u). The

transition probabilities may be approximated using the cumulative densities of the multivariate normal

but this may lead to values that do not add up to 1. Hence, we first define p′XY(u) as

p′XY(u) =

∫
y∈Y

1√
(2π)r det Σ(Xc,u)

exp

(
−1

2
(y −α(Xc,u))TΣ(Xc,u)−1(y −α(Xc,u))

)
dy (23)

where α(Xc,u) and Σ(Xc,u) are defined as mentioned earlier. Next, we normalize these values by setting

pXY(u) = p′XY(u)/
∑
Y ′∈S p

′
XY ′(u).
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Figure 4: Transitions between aggregated states

Costs

The cost incurred in choosing u in state X , g(X ,u), is defined as g(X ,u) =
∑
Y∈S pXY(u)TSTT(Yc).

The objective for the approximate MDP is defined similarly as in Section 3.2. Let Jν(X ) be the average

cost per stage for policy ν when the system starts at state X . Assuming that Xk represents a state on the

kth day in the aggregated system,

Jν(X ) = lim
K→∞

1

K
E

{
K−1∑
k=0

g (Xk,ν(Xk))
∣∣∣X0 = X

}
(24)

where
(
ν(X )

)
X∈S specifies the action ν(X ) ∈ U(X ) to be taken when the system is in state X . Let the

optimal policy be denoted by ν∗, i.e., J∗(X ) ≡ Jν∗(X ) = minν∈Φ Jν(X ), where Φ is the set of all admissible

policies. Since the state and action spaces are finite, Algorithm 1 can be applied to solve the approximate

MDP.

Let Γ : S → S be a mapping that gives the aggregated state to which a state in the original state space

belongs (ties are broken arbitrarily). Then an approximate optimal policy for the original MDP can be

defined as
(
µ(x)

)
x∈S , where µ(x) = ν∗

(
Γ(x)

)
.

5 Demonstration
The method described in the previous section provides a policy that is optimal for the approximate MDP

and an immediate question of interest is if it is close to the optimal policy for the original MDP. One

possible way to answer this question is by tracking the errors involved. However, this is extremely difficult

as we are making several approximations to the transition probabilities and in aggregating states. Instead,

in this paper, we resort to numerical experimentation to make claims about the approximate policy. While

computing the optimal expected TSTT for large n is difficult, for small values of n, we can use relative

value iteration or other methods to exactly compute the optimal expected TSTT which can thus be used

to ascertain how far we are from the optimal.

For any n, clearly the expected TSTT of the no-tolls case (or the do-nothing option) gives an upper bound

to the optimal TSTT. Calculating the expected TSTT of a given policy is relatively easy and can be done
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by estimating the steady state distribution of the Markov chain under that policy or by simulation. Thus,

we can estimate the expected TSTT under the approximate policy ν∗(Γ(x)) and check if is an improvement

over the no-tolls option, i.e., if it provides a better upper bound.

As n increases, the quality of approximations made to the state space and transition probabilities improves

and depending on the available computing power, one can pick larger δ to develop finer partition schemes.

Hence, we claim that this empirical line of analysis is proof enough that this method may be applied to

problems with large state spaces.

For the numerical results presented in this paper, we consider the network in Figure 5. Each traveler

has three routes 1-2-4, 1-2-3-4, and 1-3-4. The link level travel times are assumed to be a function of

the link flows and are shown in the figure. We assume that the set of possible tolls on each route can

be enumerated as {0, 2, 4, . . . , 8}, i.e., the action space for each state is {0, 2, 4, . . . , 8}3. The methods

described were implemented in C++ (using the g++ compiler with -O2 optimization flags) on a Linux

machine with 24 core Intel Xeon processors (3.33 GHz) and 12 MB cache. The cumulative densities for the

multivariate normal distribution were obtained using a Fortran function available at http://www.math.

wsu.edu/faculty/genz/software/software.html. The termination criterion for relative value iteration

was set to 1E-07. The value of the dispersion parameter θ was fixed at 0.1. Most of the code was

implemented in a parallel environment using OpenMP except for function calls to the Fortran code.
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Figure 5: Network used to test the approximations

Solution quality

Table 1 compares the expected TSTT of the optimal and approximate policies for different number of

travelers. It can be observed that the approximate policies perform better than the no-tolls option and the

quality of approximation gets better with increase in δ. In all four cases, the approximate policies were

found to be optimal or nearly optimal for large δ.
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Table 1: Comparison on expected TSTT of policies

n Optimal expected TSTT
Expected TSTT of approximate policy

Expected TSTT for no-tolls
δ = 5 δ = 10 δ = 20

50 200.012 200.012 200.012 200.012 233.966
100 720.506 746.378 720.520 720.510 830.267
150 1532.220 1658.040 1532.930 1532.530 1730.410
200 2618.180 2881.280 2619.450 2618.750 2932.050

Computational performance

Table 2 indicates the wall-clock time in seconds for the steps involved in solving the exact and approximate

MDPs. As mentioned earlier, the algorithms were implemented in a parallel environment with 24 cores

except for the computation of transition probabilities of the approximate MDPs. Since these probabilities

can be computed independently of each other, one can expect near linear speedup if implemented in a

parallel manner. Notice that for n = 100, the value iteration for the exact method takes nearly 50 minutes

and on the other hand the approximate methods provide near optimal solutions within a few seconds.

For the exact MDP, when n = 150 and n = 200, the memory requirements for storing the transition

probabilities exceeded available computing resources and hence they were not stored but were recomputed

within each value iteration step. The run times for these instances were around 3 to 5 hours and have been

left out of Table 2 in order to provide a fair comparison.

The results appear promising and for problems with much larger n, we may choose a value of δ according

to the available computational resources. As the quality of the approximations get better with increase in

n, the approximate policies can be expected to perform better than the no-toll policy.

Table 2: Wall-clock times (in seconds) for exact and approximate methods

Number of Travelers → 50 100 150 200

Exact MDP

No. of states 1326 5151 11476 20301
State space 0.023 0.193 0.561 1.316
Trans prob 5.370 229.614 - -
Value itn 2.597 3056.490

Approx MDP (δ = 5)

No. of states 25 25 25 25
State space 5.80E-05 7.40E-05 5.70E-05 6.00E-05
Trans prob 293.713 198.249 145.295 103.442
Value itn 0.210 1.558 0.013 0.040

Approx MDP (δ = 10)

No. of states 100 100 100 100
State space 5.13E-04 3.69E-04 3.36E-04 3.04E-04
Trans prob 1351.90 1785.57 1461.96 1163.03
Value itn 0.189 0.346 0.388 0.016

Approx MDP (δ = 20)

No. of states 400 400 400 400
State space 3.79E-03 3.77E-03 2.60E-03 2.53E-03
Trans prob 9538.21 9505.30 9606.38 9733.46
Value itn 0.377 0.451 0.243 0.425

Mixing times

The Markov chain associated with any given policy is irreducible and aperiodic and hence has a steady
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state distribution. However, it takes a certain amount of time for the Markov chain to get “close” to its the

stationary distribution. While, this is not a major concern for the average cost MDP, from a theoretical

perspective, since we let k →∞, it would be useful to know how long it takes the Markov chain to reach

its stationary distribution from a practical standpoint.

This question can be answered by analyzing the mixing time of the Markov chain associated with the

optimal policy. In order to do so, a few definitions are in order. Let ‖ · ‖TV represent the total variation

distance, which is a measure of the distance between two probability distributions. For any two probability

density functions π and π′, the total variation distance is defined as ‖π− π′‖TV = maxA⊂S |π(A)− π′(A)|.
Further, if S is discrete, it can be shown that ‖π − π′‖TV = 1

2 maxx∈S |π(x)− π′(x)| (Levin et al., 2009).

Now let P represent the transition probability matrix associated with the optimal policy µ∗, i.e., P (x,y) =

pxy(µ∗(x)) and let π(x) denote the steady state probability of observing state x. We define the maximum

variation distance d(k) between the rows of P and π after k steps as follows:

d(k) = max
x∈S
‖P k(x, ·)− π(·)‖TV (25)

Since a steady state distribution exists, d(k)→ 0 as k →∞. Further, for irreducible and aperiodic Markov

chains, the rate at which d(k) shrinks to zero is exponential and is bounded below by 1
2(1− γ)k, where γ

is the absolute spectral gap which equals one minus the second largest magnitude eigenvalue (Montenegro

and Tetali, 2006). Thus, the higher the value of gamma, the faster the rate at which the Markov chain

converges to its steady state distribution. Another way to analyze the mixing times is by observing the

least number of time steps before d(k) falls below an arbitrary threshold ε.

tmix(ε) = min{k : d(k) ≤ ε} (26)

Table 3 shows the spectral gap and mixing times for the Markov chains associated with the optimal policy

for the four cases tested earlier. The spectral gap is not close to 0 and hence the Markov chains mix fairly

quickly.

Table 3: Spectral gap and mixing times for different problem instances

Number of travelers (n) Spectral gap (γ) Mixing time (tmix(0.01))

50 0.767 3
100 0.530 6
150 0.491 7
200 0.560 6

Finite Markov chains are often known to abruptly convergence to their stationary distributions. This

feature, also known as the cutoff phenomena (Diaconis, 1996; Chen, 2006), results in a sudden drop in the

d(k) values. Figure 6 shows the maximum variation distance across consecutive days for different problem

instances. While no evidence of the cutoff phenomenon was found, it may be interesting to see if such

phenomena occur in problems with larger state spaces. We, however, observed that the mixing times of
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Markov chains increase with increase in the size of the state space.
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Figure 6: Variation distance of Markov chains associated with the optimal policy

6 Discussion
In this section, we first present some other objectives that may be of interest to a system manager or a

private tolling agency. We then conclude by summarizing the methods proposed in this paper and discuss

potential future research ideas.

6.1 Variants

6.1.1 Other network-wide objectives

By defining the average costs/rewards for a state-action pair differently we can find dynamic pricing policies

that optimize other objectives.

Maximizing the probability of convergence to a target state: Suppose we wish to increase the

probability of finding the system in a particular state in the long run. We will henceforth refer to this

state as the target state. While a SO flow solution is an obvious choice for the target state, one could think

of other target states based on other network wide objectives such as emissions. Also, in the presence of

multiple NE solutions, one equilibrium may be favored over another and be chosen as the target state. In

order to achieve this objective, we define the rewards (instead of costs) as follows:

g(x,u) =

1 if x is the target state

0 otherwise
(27)

Thus, every time the system leaves the target state we receive a reward of 1 unit and therefore the long

run probability of being in the target state is the average reward per stage. Instead, if we want to increase
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the probability of finding the system in set of states (i.e., we have a set of target states), we could just set

g(x,u) = 1 for all x that belong to such a set and 0 otherwise.

One can think of extensions to these problems in which tolls are disallowed at the target state, i.e., if the

network is at the target state on a particular day, then the system manager may choose to not collect any

tolls for the next day. This mechanism has the same flavor as that of punishment strategies in repeated

games that are used to force players to cooperate. This feature can easily be modeled by setting the action

space at the target state to the empty set. The objective is likely to be lower when tolls are disallowed.

Yet, by pricing all states except the target state, this formulation can lead to an increase in the probability

of reaching the target state.

Minimizing the expected deviation from TSTT(xSO): Suppose we want to minimize the deviation

from the TSTT of the SO state. This objective could be useful in the context of improving travel time

reliability as it can help reduce the variance in travel times and may be achieved by defining the stage

costs as follows:

g(x,u) = (TSTT(x)− TSTT(xSO))2 ∀u ∈ U(x) (28)

6.1.2 Incentives and revenue maximization

Assume that the system manager can incentivize travelers in addition to collecting tolls. Suppose that we

model incentives as negative tolls. The optimal policy in such cases may require the system manager to

pay something to travelers on an average. We can avoid this by adding side constraints (32) to the LP

model (see Bertsekas (2007) for details) for the average cost MDP as shown below. Let b(x,u) be the

expected revenue/cost for the system manager when u is chosen at state x. The idea behind adding the

side constraints is similar to budget balance mechanisms that are studied in mechanism design in which

payment schemes that ensure zero net payments to all players are sought.

λ∗ = min
∑
x∈S

∑
u∈U(x)

d(x,u)g(x,u) (29)

s.t.
∑

u∈U(y)

d(y,u) =
∑
x∈S

∑
u∈U(x)

d(x,u)pxy(u) ∀y ∈ S (30)

∑
x∈S

∑
u∈U(x)

d(x,u) = 1 (31)

∑
x∈S

∑
u∈U(x)

d(x,u)b(x,u) ≥ 0 (32)

d(x,u) ≥ 0 ∀x ∈ S,u ∈ U(x) (33)

In the above LP model, (30) represents the balance equations and (31) is the normalization constraint.

The optimal values of d∗(x,u) can be used to construct the steady state distribution and the optimal

policy. More precisely, for ergodic MDPs, for every state x ∈ S, there exists exactly one u ∈ U(x) for

which d∗(x,u) > 0. Setting µ∗(x) to u ∈ U(x) for which d∗(x,u) > 0 gives the optimal policy. Further,
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d∗(x,µ∗(x)) denotes the steady state probability of finding the system in state x under the optimal policy.

Hence, the objective represents the expected TSTT and the left hand side of constraint (32) computes the

expected revenue/cost.

However LP models are well suited for problems with small state and action spaces. We may therefore

use the approximation methods developed in Section 4 and formulate the LP using the aggregated state

space. Also, since travelers do not perceive incentives and tolls the same way, one can use prospect theory

(Kahneman and Tversky, 1979) to distinguish between these. In addition, if the system manager wishes to

achieve a certain target revenue (which could in turn be used for maintaining the tolling infrastructure),

we can set the right hand side of constraint (32) to the expected profit or target value.

6.2 Conclusions

In this paper, we developed a dynamic day-to-day pricing model that can help a system manager minimize

the expected TSTT. Specifically, we formulated the problem as an infinite horizon average cost MDP which

provides stationary policies that are a function of the state of the system. Since practical problems involve

a large number of travelers and exponential state spaces, we proposed approximate solution methods and

performed a few numerical experiments to test their quality.

The results indicate that (1) for large number of travelers, the approximate policies obtained by state space

aggregation methods result in a significant reduction of expected TSTT compared to the no-toll case and

(2) the computation times for obtaining an approximate optimal policy are reduced to a tractable degree

after aggregating states.

The findings in this paper call for exploring several scenarios which relax the assumptions made. For

instance, in practice, users may not in respond to tolls the same way because they may have different

monetary values for time. Further, the route choice mechanism for all travelers may not be well captured

using a single logit or probit choice model. In such cases, we could use reinforcement learning approaches

to learn how travelers respond to congestion and pricing, and compute policies in an online manner. Also,

it would be interesting to extend the current models to problems with elastic demand.
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