
Adaptive Transit Routing in Stochastic

Time-Dependent Networks

Tarun Rambha1, Stephen D. Boyles1 and S. Travis Waller2

1Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin

2School of Civil and Environmental Engineering, University of New South Wales

Abstract

We define an adaptive routing problem in a stochastic time-dependent transit network in which

transit arc travel times are discrete random variables with known probability distributions and formu-

late it as a finite horizon Markov decision process. Routing strategies are conditioned on the arrival

time of the traveler at intermediate nodes, and real time information on arrival times of buses at stops

along their routes. The objective is to find a strategy that minimizes the expected travel time, subject

to a constraint that guarantees that the destination is reached within a certain threshold. While this

framework proves to be advantageous over a priori routing, it inherits the curse of dimensionality

and state space reduction through preprocessing is achieved by solving variants of the time-dependent

shortest path problem. Numerical results on a network representing a part of the Austin transit system

indicate promising reduction in the state space size and improved tractability of the dynamic program.

Keywords: transit routing; stochastic shortest paths; curse of dimensionality; state space reduction;

Markov decision process

1

1 Introduction

Transit networks are often subject to uncertainty in arc travel times. Variability in the time taken to

traverse an arc results from several factors such as congested road conditions, traffic signals, inclement

weather and maintenance disruptions (particularly in rail networks). These factors play an important role

in trips involving transfers and in cities with alternate transit options between an origin-destination (OD)

pair. However, most transit routing applications seldom take uncertainty into account while providing

routing policies. These applications prescribe what we call a priori strategies, which inform travelers

where to board, get down and transfer based on frequencies or schedules published by transit agencies. A

priori strategies in stochastic networks are generally sub-optimal, and it is possible to construct adaptive

strategies with lower expected travel time by making use of information related to the location and travel

times of buses in a network. Recent advances in intelligent transportation systems (ITS) allow us to

gather such real-time data (such data is already publicly available in several cities around the world),

which may also be used in characterizing the distributions of uncertainty in the network. .

1 2 3

5

4
Route r1
Route r2

1 1

1

1 or 10

Figure 1: Illustration of adaptive routing in transit networks

Consider an example (see Figure 1) to illustrate the sub-optimality of a priori strategies. Let at t = 0,

buses b1 and b2 start at nodes 1 and 4 on routes r1 and r2 respectively. The time taken by the buses to

traverse the transit arcs is indicated in the figure. Assume that the travel time on the transit arc (4, 5) is

either 1 or 10 with equal probability. Also, assume that the walking travel time along the arcs shown in

the network is 5. Suppose we wish to travel from node 1 to node 3. If we board bus b1 and reach node

2

2, we could either walk to node 3 or wait for bus b2. The expected travel time for these two strategies

is 6 and 7.5 respectively. Therefore, the optimal a priori strategy is to board bus b1 and walk to the

destination. However, if bus b2 reaches node 5 at t = 1, it is guaranteed to arrive at node 2 at t = 2 and

hence waiting is optimal. But if, at t = 1, we received information that bus b2 failed to reach node 5,

walking to node 3 is optimal. Such an adaptive strategy has an expected cost (throughout this paper,

the terms travel time and cost are used interchangeably) of 3(0.5) + 6(0.5) = 4.5, which is lower than

the optimal a priori solution.

Adaptive shortest path problems in stochastic networks have been widely studied in the literature. In his

seminal paper on this subject, Hall (1986) noted that the least expected time path cannot be found using

standard shortest path algorithms as it is not a simple path, but a strategy or a hyperpath in which arcs are

chosen based on the arrival time at intermediate nodes. Miller-Hooks and Mahmassani (2000), and Miller-

Hooks (2001) developed efficient labeling algorithms to solve the problem of finding the adaptive least

expected path in stochastic time-dependent networks in which the arc travel time distributions vary with

time. Pretolani (2000) solved a similar problem using Nguyen and Pallottino (1989)’s shortest hyperpath

algorithms. Polychronopoulos and Tsitsiklis (1996) used dynamic programming to formulate stochastic

shortest path problems with recourse in which arc costs are random and the uncertainty is revealed as

the network is traversed. Waller and Ziliaskopoulos (2002), and Provan (2003) extended the problem of

finding adaptive strategies to networks with arc cost dependencies under a reset assumption according

to which the cost of an arc is realized every time its tail node is reached even if it was previously visited.

Some of the other extensions of stochastic shortest path problems include K-shortest paths (Nielsen et al.

(2004) and Nielsen et al. (2014)), bi-criterion shortest paths (Miller-Hooks and Mahmassani (1998), and

Nielsen et al. (2003)), and optimal routing in the presence of correlated arc travel times (Huang and Gao

(2012)). However, finding adaptive paths in transit networks is relatively difficult due to the possibility

of waiting and the issue of common bus lines as noted by Chriqui and Robillard (1975). A traveler in a

transit network is often faced with the option of boarding multiple buses on different lines to traverse an

3

arc or a section of a route.

Adaptive route choice in transit networks has been primarily studied as a sub-problem in frequency based

transit assignment. In these models, the headway between bus arrivals is assumed to be random with

some known distribution (typically exponential). In the presence of common bus lines, travelers choose

a subset of available lines, called the attractive set, such that the expected travel time to the destination

is minimized. A strategy is defined using the line chosen at each stop (or a probability distribution over

the attractive set) and the alighting point corresponding to the chosen line. While these models generally

focus on estimating the expected waiting time, randomness in the in-vehicle travel time is ignored and

transfers are not explicitly modeled. Spiess and Florian (1989) considered a transit network in which

waiting times at nodes depend on the combined frequency of lines, and the strategy of a traveler is to

board the first bus serving a line belonging to the attractive set. Nguyen and Pallottino (1988), and

Nguyen et al. (1998) developed a graph theoretical framework in which travelers are assumed to choose

hyperpaths, which define a strategy and provide the probability of boarding a line belonging to the

attractive set. The cost of a hyperpath includes transit arc costs and waiting travel times weighted by

appropriate probabilities. de Cea and Fernández (1993), and Wu et al. (1994) examined strategies in a

broader class of transit assignment problems which incorporate the effects of congestion.

Route choice in stochastic time-dependent transit networks in the presence of online information was

studied by Hickman (1994), Hickman and Wilson (1995), and Hickman and Bernstein (1997) using a

dynamic path choice model in which a traveler at the origin, based on the information gained while

waiting, decides to board a bus or wait for a bus that arrives later. Conceptually, their models can be

extended to handle situations involving transfers in which strategies are not only dependent on the arrival

time at a node, but also on the information on buses serving the node received until that node is reached.

However, their proposed extension is somewhat limited as it only considers the information on buses that

arrive at a particular node at which a traveler boards or transfers. Gentile et al. (2005) computed optimal

4

routing strategies and equilibrium transit flows assuming that passengers have access to the estimated

waiting time and the expected time to reach the destination for each line in the network. A more detailed

summary of literature on adaptive routing in transit systems can be found in Rambha (2012).

In this paper, we develop an adaptive route choice model in schedule-based transit networks which are

subject to uncertainty in arc travel times. We propose a less restrictive definition of a strategy by making

use of information on all the buses in the network. A treatment of the adaptive transit routing (ATR)

problem as a finite horizon Markov decision process (MDP) is facilitated by the definitions of the state

of the system and the discretization mechanism. Strategies are described using the notion of system

states (which are defined by the spatial and temporal locations of buses and the traveler in the network)

and travelers are assumed to choose least expected cost policies which guarantee that the destination is

reached within a prespecified time. However, this framework leads to an unwieldy state space, but not

all system states are likely to influence the optimal strategy. Therefore, a major goal of this paper is to

develop causality based preprocessing methods that help reduce the state space to improve tractability.

For example, in a problem instance discussed later, the size of the state space is reduced roughly from

about 1031 to 1010. These preprocessing methods make use of results from proposed variants of the

time-dependent shortest path problem. Labeling algorithms for solving these variants are also discussed.

The performance of the models developed in this study makes a case for using bus-based approaches for

transit routing as opposed to conventional line-based methods.

The rest of this paper is organized as follows: In Section 2, we introduce the problem and present the

notation used. Section 3 contains a description of the preprocessing methods used to reduce the state

space. In Section 4, we develop a framework for solving the ATR problem as an MDP. Section 5 contains

the computational results of an implementation of the state space reduction methods and the dynamic

program on a portion of the Austin, Texas transit network. Finally, in Section 6, we summarize the

findings and limitations of this study, and discuss possible directions for future research.

5

2 Problem Description

2.1 Notation

Let B and R represent the set of buses and routes (in this paper, the terms routes and lines are assumed

to have the same meaning) respectively. The set of routes in the network is similar to those defined by

transit agencies except that routes in opposite directions (for instance northbound (NB) and southbound

(SB)) are treated as different routes. Let G = (N,A) be a directed network, where N represents the set

of nodes/bus stops and A denotes the set of arcs. If a node happens to be the destination of one route

and the origin of another and if a single bus serves the two routes in succession, the node is replicated.

We define A as Aw ∪ Ar ∪ Ad, where Aw represents the set of walking arcs between every pair of nodes

in N (includes self-loops of cost 1 to model waiting), Ar consists of transit arcs between bus stops along

routes in the network, and Ad represents the set of dummy arcs used to model the slack in schedules when

buses switch routes (discussed in detail in Section 2.3). Slack here refers to the layover time between the

trips made by a bus. The time period of interest T is divided into unit intervals {0, 1, 2, . . . , t, . . . , Tmax}

each of which denotes the time elapsed from the start of the first trip of first bus. Let tO be the time at

which a traveler departs from the origin node O. We do not set tO to 0 as we need to keep track of buses

that are already in the network when the traveler departs from the origin.

Let βb describe a trip (which is assumed to contain information related to stops and scheduled arrival

times) along a route served by bus b ∈ B. We denote the set of individual states of a bus b by Sb and

define its elements (represented by sb) using the ordered pair (nb, tb), where nb ∈ N(βb) denotes the most

recently visited bus stop and tb ∈ Tβb(nb) is the time at which the bus b, during trip βb, arrived at node

nb. The individual state of buses, in practice, may be determined by observing the actual arrival times

of buses at bus stops in the network. The individual state of a traveler is represented by (n, t), where

n ∈ N and t ∈ T , and denotes the node and time where a traveler is present in the network. The system

state space S is a subset of the Cartesian product of the individual states of buses, the set of nodes, and

6

the time period of interest, i.e., S ⊆ S where S = (×b∈BSb) × N × T . The construction of the set of

individual states Sb and the system state space S will be discussed later. The state of the system at the

instant the traveler departs from the origin is called the initial state or the current state. Table 1 lists

the symbols used to describe the ATR problem.

Table 1: List of symbols

Symbol Description

B Set of buses (indexed by b)

R Set of routes (indexed by r)

Ib Itinerary of a bus b, which is the set of trips made by the bus (trips are indexed by βb)

N(βb) ⊆ N Set of nodes visited by bus b in trip βb

A(βb) ⊆ Ar Set of arcs included in trip βb

Tβb(n) ⊆ T Set of times at which bus b reaches node n, where n ∈ N(βb)

fβb(n) Earliest possible time at which bus b reaches node n, where n ∈ N(βb)

lβb(n) Latest possible time at which bus b reaches node n, where n ∈ N(βb)

Cβb(a) Random variable representing the travel time on arc a, where a ∈ A(βb)

Ωβb(a) Support of travel time on arc a, where a ∈ A(βb)

cωβb(a) ωth element of Ωβb(a) (without loss of generality, assume that cωβb(a)’s are arranged in

increasing order, i.e., c1
βb

(a) is the least possible travel time on arc a)

wij Walking travel time on arc (i, j), where (i, j) ∈ Aw and i 6= j (it is set to the cost of
the path having the least walking time in the physical roadway network)

ñ(sb) Node associated with state sb, where b ∈ B
t̃(sb) Time associated with state sb, where b ∈ B
orderb(sb) Number of nodes visited by bus b between (being present in) the current state and state

sb (if the individual state of a bus b in the current state vector is sb, orderb(sb) = 1)

2.2 Assumptions

Given below is a list of assumptions used in this paper. These assumptions not only assist in defining the

states of the buses in the network, but are also pivotal to some of the assertions made in the algorithms

and preprocessing methods discussed in later sections.

1. All buses have unlimited capacity.

2. Travel times on all arcs are assumed to be integer-valued.

3. Bus bunching and overtaking is permitted, i.e., FIFO order need not be preserved.

4. Printed schedules for trips along a route in R and the bus to which each route trip is assigned is

7

assumed to be known. This information is used to construct the itinerary of each bus in B.

5. Each bus can serve multiple routes. However, a bus can serve route r1 and subsequently route r2

only if the destination of r1 is the origin of r2.

6. The time taken by buses during boarding and egress of passengers is neglected (this may be incor-

porated by adjusting the arc travel times if required).

7. Buses begin and end trips at a garage (represented by a node labeled 0) i.e., a bus in the network

is always assumed to serve a route. This assumption is not restrictive since a bus that leaves the

network and returns later may be considered as a new bus.

8. Travel times on transit arcs are independent random variables with finite support whose distribu-

tions are known. It is also assumed that the least possible travel time on a transit arc (i, j) is the

difference between the scheduled arrival times at nodes j and i. In other words, buses are assumed

to never arrive before the scheduled time. We make this assumption because drivers are typically

instructed to wait at bus stops if they are early.

9. The travel time distribution on a transit arc traversed by a bus on a particular trip remains the

same for every possible arrival time at its tail node. While the methods developed in this paper can

be applied to cases in which the probability mass functions vary with time, this assumption makes

it easier to illustrate the construction of the individual states of buses and the algorithms used for

preprocessing.

10. The first trip made by a bus starts on time and buses begin new trips on schedule if they can by

adjusting the slack between trips. Hence, if a bus arrives at or after the scheduled departure time

at the origin of its next trip, it is assumed to proceed immediately without waiting.

Assumptions 1 and 6 are common to Hickman (1994), and Hickman and Bernstein (1997). While

these authors assume that the slack in schedules is utilized even if a bus is delayed, we use Assumption 10

instead as we feel it is more practical. Assumptions 2, 8, and 9 are similar to the ones used in

Miller-Hooks (2001), and Miller-Hooks and Mahmassani (2000).

8

2.3 Constructing the individual states of a bus

In order to construct the individual states of a bus, we make use of the current state vector, the set of

trips Ib, and the pmfs of Cβb(a)’s. Note that at tO, buses are either in the network or in the garage.

By convention, we assume that the state of a bus that is yet to enter the network is represented by the

node-time pair (0,−1) and a bus in the garage that left the network is represented by (0,−2).

If a bus is present in the network, the current state vector provides information about the most recently

visited stop and the time at which the bus visited it. This gives us the first state of the bus and the

states at subsequent nodes are obtained using the travel time distributions. When route changes occur,

the cost of the arc connecting the destination of one route and the origin of the other is modeled to

reflect Assumption 10. If successive routes served by a bus are such that the destination of the first route

is the origin of the next route, by construction, we have a copy of the node for each route and the arc

connecting these nodes is used to model the slack. Figure 2 illustrates the process of construction of the

individual states of a bus in a manner consistent with the assumed pmfs.

1 2 3 4

2 6 10 15 20Schedule

States 3 7
11

11
13
15
17

15
17

20
22
24t3

4(0.6)
8(0.4)

4(0.8)
6(0.2)

5(0.7)
7(0.3)[15-t3]+

Route r1
Route r2

3’

Figure 2: Individual states of a bus

Consider a bus b that was scheduled to arrive at stop 1 at time t = 2. Suppose that the current state

vector indicates that the bus was last seen at stop 1 at time t = 3. The times associated with individual

states are listed below the nodes in Figure 2. The values on the arcs indicate travel times and the

corresponding probabilities are shown in parentheses. Since the travel time on arc (1,2) is either 4 or 8,

the possible individual states at node 2 are (2, 7) and (2, 11). Proceeding similarly, we find the states at

9

node 3 for each possible arrival time at node 2. Let node 3 be the destination of route r1 and the origin

of route r2 and let t3 represent the arrival time of the bus at node 3. In order to model the slack, the cost

of arc (3, 3′) is defined as [15− t3]+ = max{15− t3, 0}. This construct ensures that if the bus arrives at

node 3 at t3 = 11 or 13, it waits for 4 or 2 min respectively, but if it arrives at t3 = 15 or 17, it proceeds

immediately to serve the next route. As defined earlier, the states of a bus are assumed to be spatially

ordered based on the number of nodes visited by it from its initial state, for instance, orderb
(
(1, 3)

)
= 1.

Likewise, order of the states at nodes 2, 3, 3′, and 4 equals 2, 3, 4, and 5 respectively. Note that this

procedure of constructing individual states holds even in the absence of Assumption 9. For instance, if

the travel time on arc (2,3) is 4 or 16 when the bus arrives at node 2 at t = 7 and is 5 or 7 when it arrives

at t = 11, then the individual states at node 3 are (3,11), (3,23), (3,16), and (3,18).

If a bus is in the garage at tO, we append a node 0 before its first trip. For example, suppose a traveler

departs from his/her origin at t = 3, and a bus b is scheduled to begin its trip from node 1 at t = 14.

Since the bus is not present in the network at t = 3, we add a node 0 and an arc (0,1) as shown in

Figure 3. This network transformation is necessary for constructing the system state space.

0 1 2

States

2(0.8)
3(0.2)

-1 14 16
17

14 16Schedule

Figure 3: Individual states of a bus in the garage

2.4 Formal definition of the ATR problem

The ATR problem is formally defined as follows: Given a stochastic transit network (in which the

transit travel times are time-dependent and random with known distributions), the initial state of the

system, and a destination D; an adaptive policy which minimizes the total expected travel time is sought,

subject to a constraint that D is reached within a threshold λD with probability 1 (w.p.1). While it is

commonly assumed that route choices in stochastic networks are purely governed by the expected cost of

10

travel; in minimizing this objective, a traveler might deviate significantly from an a priori path, or cycle

multiple times before reaching the destination (see Hickman (1994) for a paradoxical example in which

an adaptive policy that minimizes the expected cost may result in longer travel times along sample paths

when compared with the optimal a prori strategy). Hence, we introduce an arrival time constraint that

can help reduce such phenomena by modeling the extent of risk a traveler is willing to take.

As different individuals have different risk attitudes, the value of λD varies across travelers and is hence

difficult to define. For a traveler with a hard arrival time constraint (say the traveler has to board a flight),

the arrival time itself can be used as λD. In other cases, one could think along the lines of guaranteed

returns to define λD, i.e., if a traveler has the option of choosing a strategy that ensures that D is reached

within λD, he/she might not be inclined to follow a strategy which possibly takes longer to reach D. A

naive value of λD is the shortest walking time between the origin and the destination. While computing

this value is easy, it may be very high for trips spanning long distances and is thus impractical. In this

paper, λD is defined (in Section 3.1) using the earliest time by which a traveler is guaranteed to reach

D. Although we might find a policy that results in lower expected travel time in the absence of such a

constraint, incorporating it improves realism and further helps reduce the state space.

Let us now mathematically formulate the ATR problem as an MDP. Given the state space S, let x(s) and

X(s) denote an action and the set of available actions (action/decision space) at state s ∈ S respectively.

At each state, recognize that a traveler can wait or walk, or board a bus (if present at the stop). Therefore,

let X(s) = Xw(s) ∪ Xr(s), where Xw(s) and Xr(s) comprises the waiting/walking and transit options

available at state s respectively. While the cost of waiting/walking is deterministic, the travel time

incurred by choosing a transit arc is random and is defined by the distributions of Cβb(a)’s. In general,

let ξ̃x(s) be the random one-step cost associated with decision x(s). Further, let ξx(s) and Ξx(s) denote a

generic value and the support of ξ̃x(s) respectively. Suppose P
[
s′|(s, x(s), ξx(s))

]
represents the transition

functions, which provide the probability of ending up in state s′ assuming that the decision maker incurs

11

a cost of ξx(s) by choosing x(s) at state s. The value function at state s, denoted by V (s), is the optimal

expected cost of reaching D from state s. The value function for all states in which n = D and t = λD

(where (n, t) is the individual state of the traveler) is set to 0 and the value of all other states is initialized

at ∞. Using the notation and definitions described so far, the Bellman equation can be expressed as (1)

and in order to solve for the optimal values, one can use backward induction.

V (s) = min
x(s)∈X(s)

[
EΞx(s)

[
ξ̃x(s) +

∑

s′∈S
P
[
s′|(s, x(s), ξ̃x(s))

]
V (s′)

]]
(1)

Clearly, the number of individual states of a bus increases exponentially with the number of trips in its

itinerary which, in turn, results in an exponential number of system states. Thus, the ATR problem

exhibits what is widely referred to as the curse of dimensionality and solving it by direct application of

Bellman’s principle becomes extremely difficult unless we find ways to reduce the state space.

3 Preprocessing procedure

3.1 Preview of preprocessing methodology and Light Cones

The optimal policy is not necessarily influenced by all the buses in the network. For instance, while

traveling between an OD pair, buses that ply on routes far away from the OD pair may not impact

the optimal policy. Further, as trips made by buses beyond a certain point of time are not relevant,

only a limited number of individual states are useful in solving the ATR problem. The preprocessing

steps described in this section aim at identifying the buses and individual states that could affect travel

between an OD pair and thereby reduce the state space substantially. These steps make use of solutions

to variants of the time-dependent shortest path (TDSP) problem, which are useful in two ways. First,

they provide a rationale for defining the value of λD. Second, they help develop an elimination procedure

which is explained in Sections 3.2 and 3.3. More specifically, the following four problems are considered:

(a) Earliest Origin-to-All TDSP (EOA):

Assuming that a traveler departs from the origin at tO, the EOA problem involves computation of

labels (denoted by µn, where n ∈ N) that represent the earliest possible time at which the nodes

12

in the network can be reached with positive probability (w.p. > 0).

(b) Earliest All-to-Destination TDSP (EAD):

Given that we depart from a node n at time t, this problem involves finding labels γn(t) which

specify the earliest we can reach the destination w.p. > 0.

(c) Latest Origin-to-All TDSP (LOA):

In this problem, given that a traveler is at the origin at tO, we determine a label (denoted by λn,

where n ∈ N) for each node which represents the earliest we can reach the node w.p.1.

(d) Latest All-to-Destination TDSP (LAD):

Given an individual state of a bus sb, the problem is to find η(sb), the earliest we can reach the

destination w.p.1 assuming that the individual state of the traveler is same as that of the bus. The

all in LAD refers to all individual states and should not be confused with the nodes in the network.

Algorithms for the above problems are presented in Appendix A and may be skipped by the reader

without loss of continuity. Let us now briefly discuss how the optimal labels of these problems help

discard the states of the buses that do not affect the optimal policy.

We first solve the LOA problem and set λD to the label of the destination. This not only reflects the

assumptions made on travelers’ risk attitudes, but also ensures that a feasible solution to the ATR problem

exists. Note that the state space reduces with decrease in the arrival time threshold, but the methods

for preprocessing are not specific to a particular value of λD. We then discard all individual states of a

bus if the earliest time at which the bus reaches a node is greater than λD and reduce the size of T by

resetting the value of Tmax to max
b∈B,sb∈Sb

t̃(sb). Although this step is not strictly necessary, it speeds up

the computation of the other problems as their complexity depends on Tmax. Next, we solve the EAD,

LAD, and EOA problems, the purposes of which may be motivated by the following questions:

1. Suppose the destination of a traveler is to the south of the origin node. Should he/she consider the

states of a bus heading in the opposite direction (i.e., northbound)? If yes, do all individual states

of the bus play a role in finding the optimal strategy?

13

2. Suppose a traveler just missed a bus. Can we ignore it while populating the system states?

Consider the first question. A traveler heading south might reach the destination faster by transferring

to another bus after boarding the northbound bus, thus making a case for including the northbound bus

while constructing the system state space. In other words, a user may travel away from the destination

in the process of minimizing his/her expected travel time. However, all individual states of the bus may

not aid in finding the optimal strategy and using the EAD and LAD labels, we might be able to discard

the individual states from which the destination cannot be reached within λD. Let us now address second

question. Even if a traveler misses a bus, the missed bus may be caught at a later stop using some faster

service. This line of thought encourages us to employ the EOA labels to find the earliest possible arrival

times at stops along the bus route and check if we can board the bus at some individual state.

The above mentioned elimination procedure is inspired by the concept of light cones used in relativistic

physics. A light cone is a flash of light from an event (E) that travels in spacetime and consists of a past

and a future light cone. While the past light cone represents events/points in spacetime from which a

flash of light can be observed at E, the future light cone includes all points that can be reached by a light

pulse from E. Light cones serve as a tool to understand causality; only the events that occur in the past

light cone can possibly affect E, and E can possibly influence only the events in the future light cone.

Destination

Space

Time

1
2

3

Origin Destination

Space

Time

Origin

λD λD

Figure 4: Light cones and the relevant states of a bus in the network

14

Consider the example shown in the left panel of Figure 4. Suppose that the network consists of a single

bus, and a traveler starting from the origin at t = 0. For illustrative purposes, assume that the diagram

representing how fast the traveler reaches the nodes in the network is a cone. The cone at the origin can

be constructed using the EOA labels. Let points 1, 2, and 3 represent three states of the bus. State 3 lies

outside the cone at the origin and hence cannot be reached. On the other hand, the traveler can reach 1

and 2 as they lie within the cone at the origin. Note that the point represented by the destination and

λD lies inside the cone at 2, but falls outside the cone at 1 (this may be inferred using the EAD or LAD

labels). Therefore, the only state which can potentially influence the optimal strategy is 2.

Another approach to visualize the elimination procedure is to construct a future cone from the origin at

t = 0 and a past cone from the destination at t = λD (see right panel of Figure 4). Individual states which

lie in the intersection of the two cones can be expected to affect the optimal policy. The exact conditions

under which an individual state can be ignored are examined in detail in the following sections.

3.2 Elimination of individual states using EAD/LAD labels

Since the traveler has to reach the destination within λD w.p.1, the EAD and LAD labels may be used to

verify if boarding a bus at an individual state violates the arrival time constraint. This is accomplished

by defining indicator variables δEAD and δLAD as shown below.

δEAD(sb) =





1 if γñ(sb)

(
t̃(sb)

)
> λD

0 otherwise
(2) δLAD(sb) =





1 if η(sb) > λD

0 otherwise
(3)

It is obvious that δEAD(sb) = 1⇒ δLAD(sb) = 1 and δLAD(sb) = 0⇒ δEAD(sb) = 0. When δLAD(sb) = 1

and δEAD(sb) = 0, a traveler at
(
ñ(sb), t̃(sb)

)
cannot reach the destination within λD w.p.1. But since

δEAD(sb) = 0, he/she can reach the destination before λD for some particular system state(s). Under

such circumstances, based on the system state, the optimal policy might direct the traveler to catch the

bus if it foresees that taking the bus does not violate the arrival time constraint and might suggest a

different action otherwise. Hence, using the LAD labels one might eliminate more states than required.

Though we present the results of preprocessing based on the LAD labels, it is beyond the scope of this

15

paper to explore the trade-off between the computational advantages of dealing with a smaller state space

obtained using the LAD labels and the value of the objective.

1 2 3 4 5
10 or 16 8 or 12 12 or 18 10 or 12

2 12
18

20

30

32

48

42

60

…

0

-1

… …

StatesStates

Figure 5: Elimination of the individual states of a bus

Let us study the elimination process using a bus whose individual states are shown in Figure 5. Table 2

contains the corresponding δ values of these states. Assume that λD = 40. Therefore, the states beyond

node 4 can be discarded. We first discuss the elimination methods using the EAD labels and later extend

it using the LAD labels. Let the individual states of the bus be represented as an acyclic network as

shown in Figure 6. A node in this network denotes an individual state and arcs are used to connect

adjacent states. Let the states that can be reached from an individual state and all the states from

which a particular state can be reached be referred to as descendant and ancestor states respectively. For

example, in Figure 6, the descendants of state (2, 12) are (3,20), (3,24), (4,32), (4,38), (4,36), and (4,42);

and the ancestors of state (3, 20) are (2,12) and (1,2). We try and fathom the nodes in this network using

the δ values, and hence one could think of this network as being similar to a branch and bound tree.

Table 2: δEAD and δLAD values for the individual states of the bus

State (sb) Node (ñ(sb)) Time (t̃(sb)) δEAD δLAD
(1, 2) 1 2 0 1
(2, 12) 2 12 0 1
(2, 18) 2 18 1 1
(3, 20) 3 20 0 1
(3, 24) 3 24 0 1
(3, 26) 3 26 1 1
(3, 30) 3 30 1 1
(4, 32) 4 32 0 0
(4, 36) 4 36 0 1
(4, 38) 4 38 1 1
(4, 42) 4 42 1 1
(4, 44) 4 44 1 1
(4, 48) 4 48 1 1

16

For the sake of illustration, a few states have been replicated (indicated by dashed connectors) in Figure 6.

All states with δEAD = 1 are marked in grey. Note that if δEAD = 1 for a particular state, we cannot

reach the destination within λD with positive probability from all descendant states. The elimination of

individual states is divided into the following two phases.

-1

2

12 18

20 24 26 30

32 38 36 42 38 44 42 48

1

0

2 2

3 3 3 3

4 4 4 4 4 4 4 4

ñ(sb)

t̃(sb)

t̃(sb)

sb ≡StateState

Figure 6: Acyclic network of individual states marked using EAD labels

Phase I:

From Figure 6, observe that if the bus at state (1,2) takes 16 minutes to travel to node 2, it certainly

does not influence the optimal strategy in which case we may assume that it exits the network. This

feature is modeled by creating an absorbing/sink state (0,−2), which indicates that the bus is back in

the garage. The Phase I elimination procedure can be described as follows. In the acyclic network of

individual states, delete arcs that connect marked states (shown by dotted lines in Figure 6) and then

delete all marked states. Arcs orphaned due to the removal of marked states are then connected to the

state (0,−2). If multiple arcs are created between an individual state and the sink state, replace them

with a single arc between the two states. Finally, connect all unmarked states (excluding the garage

states) with outdegree 0 to the state (0,−2). The resulting network of individual states is shown to the

left in Figure 7.

17

24

2

-2

12

20

32 36

1

2

3 3

4 4

-1

0

0

10

0
0

24

128
10

-1

2

-2

12

20

2

3 3

0

2

1

0

0

ñ(sb)

t̃(sb)

sb ≡StateState

Figure 7: Phase I (left) and Phase II (right) elimination of individual states

Phase II:

Suppose a traveler is about to board the bus at node 3 at t = 20. Although the destination can be reached

within λD w.p. > 0, the arrival time constraint may be violated if the bus takes 18 minutes to reach node

4. Hence, the state (4,32) can be eliminated and the bus may be assumed to proceed immediately from

state (3,20) to the garage. The state (4,36) can also be eliminated using a similar argument.

In general, assuming that ymax represents the largest order among states in the acyclic network obtained

from Phase I, we proceed as follows. If ymax is 1, the bus is completely ignored. Else, pick individual

states with order ymax. If at least one of the outgoing arcs from each predecessor state of a state with

order ymax is connected to (0,−2), we delete the state being examined and the orphaned arcs. If no state

is eliminated, we terminate. Else, ymax is recalculated and the procedure is repeated. The resulting set of

states for the example under consideration is shown to the right in Figure 7 (the relevance of the values

on the arcs connecting individual states is explained later in Section 4.1). We will henceforth refer to this

figure as the transition diagram of individual states. Note that a loop connecting state (0,−2) to itself

18

has been added in order to ensure that the bus remains out of the network once it reaches the garage.

So far, we have discussed the use of the EAD labels in eliminating individual states. In a similar vein, a

stronger, but approximate, elimination procedure can be developed using the LAD labels. We begin by

marking states using the δLAD values but unlike before, a state is marked if at least one of its descendants is

marked. Further, we unmark all marked ancestor states of unmarked states to prevent loss of information.

Finally, we employ the Phase I and Phase II techniques to eliminate individual states. Figure 8 shows

the acyclic network in which states have been marked using the δLAD values and the individual states

resulting from Phase I. As mentioned earlier, we unmark states (3,20), (2,12), and (1,2) before beginning

Phase II as the state (4,32) is unmarked. Upon using Phase II, all states are eliminated, and hence the

bus can be excluded while populating the system state space.

-1

2

12 18

20 24 26 30

32 38 36 42 38 44 42 48

1

0

2 2

3 3 3 3

4 4 4 4 4 4 4 4

-1

-2

2

12

20

32

1

2

3

4

0

0

ñ(sb)

t̃(sb)

sb ≡StateState

Figure 8: Acyclic network of individual states marked using LAD labels (left) and the individual states
from Phase I (right)

Effect of elimination on the labels and δ values:

The elimination procedure was carried out independently for each bus without regard to its impact on

the labels. However, doing so does not affect the validity of the procedure. Suppose we eliminate states

using the EAD labels. In Phase I, if a particular state of a bus is eliminated, we know that by boarding

19

the bus at that state, the destination cannot be reached within λD. If that state was used in finding the

optimal EAD label of another individual state (of the same or of a different bus), δEAD of the latter state

would be 1. Thus, eliminating the former state might increase the EAD labels but the δ values remain

unaffected. A similar reasoning holds if the LAD labels are used to reduce the individual state space.

Now consider the Phase II of the elimination process. Since unmarked states may be eliminated in this

phase, the δ values are likely to change in addition to the EAD labels. Depending on the new EAD labels,

states which were originally unmarked (i.e., δEAD = 0) can get marked. For example, in the left panel

of Figure 7, removing state (4,32) (and the arc between (3,20) and (4,32)) may preclude the possibility

of reaching the destination within λD w.p. > 0 from some or all of its ancestors, or from the states of a

different bus. Thus, we may iterate between the calculation of the EAD labels and the elimination phases

until no more states are excluded. Although we have not investigated the computational advantages of

doing so, we believe that this iterative procedure can further reduce the size of the individual state space.

If the LAD labels are used to eliminate individual states, it is easy to see that the δLAD values do not

undergo any change after Phase II.

3.3 Elimination of individual states using EOA labels

If the latest time at which a bus arrives at a node is less than its EOA label, the states of the bus at that

node do not have any bearing on the optimal policy. This can be mathematically translated by defining

a new indicator variable δEOA as follows:

δEOA(sb) =





1 if µñ(sb) > t̃(sb)

0 otherwise
(4)

Consider the example in Figure 5 to illustrate the use of the δEOA variable. Let the vector [15 25 35 50]

represent the EOA labels of nodes 1, 2, 3, and 4 (recall that the states at node 5 were discarded). The

δEOA value of every state is 1, and hence we can ignore the bus while finding the optimal policy. Now

consider another scenario in which the EOA labels are [15 25 30 42]. Clearly, we cannot reach nodes 1

and 2 before t = 2 and t = 18 respectively, but since the bus can be caught at node 3 at t = 30, it can

20

be boarded at any node along the remainder of its journey with positive probability. However, the states

at nodes 1 and 2 cannot be eliminated as the travel time realizations on arcs (1,2) and (2,3) shed more

light on the state of the bus at subsequent nodes.

In such situations, we can completely ignore a bus if, for each individual state, either δEOA or δEAD is 1.

Intuitively, this condition implies that we cannot catch the bus at some individual states, and in cases in

which we can board the bus, the destination cannot be reached within λD. A stronger, but approximate,

scheme for elimination can be similarly formulated using the values of δLAD instead of the δEAD values.

3.4 Remarks on the elimination procedure

The elimination methods descried earlier are not completely tight, in the sense that they do not fully

eliminate the buses/states that do not affect the optimal policy. Consider the example shown in Figure 9.

Assume that at t = 0, a traveler at node 1 is headed towards node 4. Also let two buses, one on each

route, start from their respective origins at t = 0. It is easy to see that the value of λD is 20. Since the

destination can be reached within λD (w.p. > 0 and w.p.1) from all individual states of the two buses,

no states are eliminated (irrespective of whether the EAD or LAD labels are used). However, in trying

to board the bus on route r2 (which, for some particular pmfs, might result in lower expected cost when

compared with boarding the bus on route r1), we risk reaching the destination after t = 20. Although

we evade this issue by ignoring the walking arc between nodes 3 and 4 (explained later in Section 4.2),

we still have to deal with the redundant states of the bus on route r2.

2

1

3

4

3 or 5

10 or 20

5 5

35

Route r1
Route r2
Walking arc

Figure 9: Drawbacks of the preprocessing techniques

21

4 Dynamic programming framework for the ATR problem

In this section, we define the elements of the MDP introduced in Section 2.4. Specifically, the following

components of the dynamic program are discussed in detail: the state space, action space, and transition

probabilities.

4.1 State space

Recall that the state space S is a subset of S, where S = (×b∈BSb) × N × T . Assume that the set of

system states at time t ∈ T is denoted by St. Note that the preprocessing methods cut down the size

of the system state space by reducing the sizes of B and {Sb}b∈B. Further, we redefine the time period

of interest as T = {tO, (tO + 1), . . . , λD}. Let the individual states (0,−1) and (0,−2) be referred to

as the source and sink respectively. Additionally, let tbsource and tbsink denote the time at which bus b

enters the network and the earliest possible time at which it reaches the garage respectively. If the bus is

already present in the network, the source is irrelevant and tbsource is set to 0. In the transition diagram

of individual states, let the cost of an arc from state sb to s′b, where sb ∈ Sb and s′b ∈ Γ̂(sb)(the set of

successor/downstream states, i.e., states directly connected to sb), be defined as follows:

α(sb, s
′
b) =





0 if Γ̂(sb) = {(0,−2)}
t̃(s′b)− t̃(sb) if neither sb or s′b represents the source or sink

max
s′′b∈Γ̂(sb)\{s′b}

α(sb, s
′′
b) if |Γ̂(sb)| ≥ 2 and s′b = (0,−2)

tbsource if (0,−1) ∈ Sb and sb = (0,−1)

(5)

Let us revisit the individual states shown in Figure 7. The numbers on the arcs in the transition diagram

indicate the α values. The first and second cases in (5) deal with situations in which the α values represent

the time taken by the bus to travel between sb and s′b. Examples of these cases include the arcs connecting

states (3,20) and (0,−2), and (2,12) and (3,20). In the third case, sb is assumed to be directly connected

to the sink and at least another individual state. For instance, consider the arc between states (1,2) and

(0,−2). Recall that if the bus takes 16 minutes to travel between stops 1 and 2, the destination cannot be

reached within λD, and hence we that assume that the bus leaves the network. By convention (the reason

22

for which is explained in Section 4.3), the cost of this arc is set to the maximum among the costs of all

other outgoing arcs from state (1,2). The fourth case is again a convention that aids in the construction of

the set of system states. Associated with each arc is a parameter π(sb, s
′
b) that represents the probability

with which state s′b can be reached from sb. This may be calculated using the distributions of Cβb(a)’s.

However, if one of the states is the sink or the source, we write π(sb, s
′
b) as follows:

π(sb, s
′
b) =





1 if Γ̂(sb) = {(0,−2)} or if (0,−1) ∈ Sb and sb = (0,−1)

1− ∑
s′′b∈Γ̂(sb)\{s′b}

π(sb, s
′′
b) if |Γ̂(sb)| ≥ 2 and s′b = (0,−2)

(6)

Notice that at t = 15, the bus in Figure 7 cannot be at states (1,2), (3,20), and (3,24). While it cannot

be at the latter two states since they represent points in future, a bus at state (1,2) would have advanced

to one of its successors by t = 12. Hence, the bus can only be at either (2,12) or (0,−2). More generally,

the procedure in Algorithm 1 can be used to mark individual states at which a bus b might possibly be

present at time t ∈ T .

Algorithm 1 Marking individual states

if t < tbsource then . Condition I
Mark source and stop

else
for all states sb ∈ Sb\

{
{(0,−1), (0,−2)} ∪ {sb : Γ̂(sb) = {(0,−2)}

}
do

if t = t̃(sb) then . Condition II
Mark state sb

else if t̃(sb) < t < t̃(sb) + max
s′b∈Γ̂(sb)

(
α(sb, s

′
b)
)
then . Condition III

Mark state sb
end if

end for

if t ≥ tbsink then . Condition IV
Mark sink

end if
end if

The algorithm first compares t with the time at which the bus enters the network. If t < tbsource, the

bus is still at the garage. Hence, we mark the source and terminate. For example, at t = 1, the bus in

Figure 7 can only be present at (0,−1). Next, we scan all states except the source and sink, and the

23

states from which the bus immediately proceeds to the garage. If t coincides with the time associated

with an individual state, we mark it using condition II. Condition III ensures that a state in future is

never marked, and an individual state is marked only if it does not advance to one of its descendants

w.p.1. Finally, if t ≥ tbsink, the bus could possibly be present at the garage, and hence we mark the sink

using condition IV. Although the states from which the bus immediately proceeds to the garage (e.g.,

(3,20) and (3,24)) are never marked, they are not excluded from the transition diagram of individual

states as they help define the action space and the transition probabilities.

In order to construct the set S, we first use Algorithm 1 to mark the states of each bus at a given time t.

We then define St as the Cartesian product of the collection of sets representing the marked individual

states of buses, N (additionally, using the EAD labels, one could exclude the nodes from which D cannot

be reached w.p. > 0), and {t}. Finally, we repeat this procedure for all t ∈ T , and set S =
⋃
t∈T St.

4.2 Action space

Given a system state s = (sb1 , sb2 , . . . , sb|B| , n, t), the action space X(s) is the set of actions available to

a traveler at (n, t). We represent a particular action x(s) using the pair (arc,mode). The value of mode

is set to 0 if the traveler chooses a walking arc, and equals b if the traveler decides to board bus b. Note

that X(s) = Xw(s) ∪Xr(s), where Xw(s) and Xr(s) comprises the waiting/walking and transit options

at state s respectively. Xw(s) may be defined as follows:

Xw(s) =
{(

(i, j), 0
)

: (i, j) ∈ Aw, i = n, γj(t+ wij) ≤ λD
}

(7)

The condition i = n ensures that the traveler can only select the waiting/walking arcs that emanate from

node n. Additionally, we compare the EAD label of node j at time (t+ wij) with λD to make sure that

choosing arc (i, j) does not violate the arrival time constraint. For example, as seen in Section 3.4, we

exclude the walking arc (3,4) from the action space of all states in which the traveler is at node 3. Using

the walking arcs in Aw is limiting in the sense that a traveler is expected to traverse an entire arc before

making his/her next decision. In practice, using the latest information on buses in the network, one

24

might choose an alternate strategy while walking between a pair of nodes. This feature can be modeled

using a denser network of walking arcs, however, at the cost of increasing the size of the action space.

Now consider the transit options available at state s. Clearly, a transit arc can be traversed only if the

individual state of the traveler is same as that of a bus in the network. Hence, we write Xr(s) as follows:

Xr(s) =
{(

(i, j), b
)

: (i, j) ∈ Ar, b ∈ B, i = n = ñ(sb), t = t̃(sb), (0,−2) /∈ Γ̂(sb)
}

(8)

In the above definition, conditions n = ñ(sb) and t = t̃(sb) imply that the traveler can board bus b. We

also ensure that the traveler, after boarding bus b, can get off at a node in the network w.p.1 by verifying

that the sink isn’t a successor of sb. For example, in the transition diagram in Figure 7, transit arc (2,3)

can be chosen only if the traveler and the bus are at node 2 at t = 12.

4.3 Transition functions

Suppose a traveler at state s chooses action x(s). The transition functions help describe the evolution

of the system and are denoted by P
[
s′|(s, x(s), ξx(s))

]
, where s′ ∈ S and ξx(s) ∈ Ξx(s). To estimate these

functions, we find the probabilities of the future states of each bus (i.e., P
[
s′b|(s, x(s), ξx(s))

]
, where b ∈ B

and s′b ∈ Sb) separately by exploiting the independence of transit travel times (see Assumption 8). If

x(s) involves boarding a bus b or if a bus b is back in the garage, then calculating P
[
s′b|(s, x(s), ξx(s))

]
is

trivial; else we use the methods developed in this section to compute P
[
s′b|(s, x(s), ξx(s))

]
.

The knowledge of sb and t (which may be obtained from the system state vector s) provides two useful

pieces of information. First, we may infer that the bus has been traveling for t − t̃(sb) since it was last

seen at a bus stop. Second, we can determine the set of “realized” states, which is defined as individual

states the bus is guaranteed to not reach. Consider the following two scenarios: (i) suppose that at

t = 15, if the bus in Figure 7 is at state (2,12), then none of the downstream states of (2,12) are realized;

(ii) instead, if the state of the bus is (2,12) at t = 21, the bus would not have reached node 3 at time 20

w.p.1, and hence we can be certain that the state (3,20) is realized.

25

In the discussion that follows, let ŝb denote a successor of sb and ˆ̂sb represent a successor of ŝb. Also let tbe

be the time elapsed since t̃(sb) (i.e., the bus is assumed to travel for tbe minutes from state sb). In order to

compute the probabilities of the future states of bus b, we first calculate Pr
[
s′b|(sb, tbe, ŝb)

]
(where s′b ∈ Sb

and ŝb ∈ Γ̂(sb)), which denotes the probability of finding the bus at s′b given that the set of individual

states
{
ŝ′b ∈ Γ̂(sb) : α(sb, ŝ

′
b) < α(sb, ŝb)

}
are realized. We may then interpret P

[
s′b|(s, x(s), ξx(s))

]
as the

probability of finding the bus at s′b in ξx(s) minutes from time t given that it was last seen at some

stop at t̃(sb), i.e., the time elapsed tbe is t − t̃(sb) + ξx(s). Assuming t̃(sb) is set to 0 if sb = (0,−1), we

therefore write P
[
s′b|(s, x(s), ξx(s))

]
= Pr

[
s′b|
(
sb, (t− t̃(sb) + ξx(s)), ŝb

)]
, where sb ∈ Sb\{(0,−2)}, s′b ∈ Sb

and ŝb = arg min
ŝ′b∈Γ̂(sb):

α(sb,ŝ
′
b)+t̃(sb)>t

[
α(sb, ŝ

′
b) + t̃(sb)− t

]
(ties are broken in favor of non-garage states).

In the example under consideration, let π
(
(2, 12), (3, 20)

)
= p and assume that the Pr[.] values for

tbe = 10 are known. In Scenario (i), if the traveler chooses an arc of cost 7 (i.e., ξx(s) = 7), then t− t̃(sb) +

ξx(s) = 10 and since no downstream states are realized, we find the probability of future states using

Pr
[
(0,−2)|

(
(2, 12), 10, (3, 20)

)]
= p and Pr

[
(2, 12)|

(
(2, 12), 10, (3, 20)

)]
= 1− p. Likewise, if the traveler

in Scenario (ii) incurs a cost of 1 unit in choosing an action, we use Pr
[
(2, 12)|

(
(2, 12), 10, (3, 24)

)]
= 1

to calculate the probabilities of the future states of the bus.

Due to their repeated use in solving the MDP, one can calculate and store the values of Pr[.] for all tbe

bounded by the largest possible travel time on any arc. We now briefly describe the process of finding

these values using a backward induction type argument. Clearly, for all tbe and sb such that (0,−2) ∈ Γ̂(sb),

Pr
[
s′b|
(
sb, t

b
e, (0,−2))

]
is 1 if s′b is the sink and is 0 otherwise. In all other cases, proceeding backwards

(i.e., examining the states with the largest order first), we may write a recursive equation as follows:

Pr
[
s′b|(sb, tbe, ŝb)

]
=

∑

ŝ′b∈Γ̂(sb):

α(sb,ŝ
′
b)≥α(sb,ŝb)

(
π(sb, ŝ

′
b)

1− ∑
ŝ′′b∈Γ̂(sb):

α(sb,ŝ
′′
b)<α(sb,ŝb)

π(sb, ŝ
′′
b)

)
F (s′b, sb, t

b
e, ŝ
′
b), (9)

26

where F (s′b, sb, t
b
e, ŝ
′
b) =





0 if
(
tbe − α(sb, ŝ

′
b)
)
< 0 and s′b 6= sb

1 if
(
tbe − α(sb, ŝ

′
b)
)
< 0 and s′b = sb

Pr
[
s′b|
(
ŝ′b, (t

b
e − α(sb, ŝ

′
b)), ˆ̂sb

)]
if
(
tbe − α(sb, ŝ

′
b)
)
≥ 0

(10)

and ˆ̂sb is a successor of ŝ′b such that α(ŝ′b, ˆ̂sb) has the lowest cost among all arcs from state ŝ′b (once

again breaking ties in favor of non-garage states). Using the fact that the bus travels for tbe minutes

from state sb, we first find downstream states (ŝ′b) which are not realized (marked in grey in Figure 10).

The posterior probabilities of reaching these states are then computed using the first expression in the

summation in (9).

Realized States Un-realized States

sb

sb

ŝb

ŝ′b

ŝ′b

ŝ′′b̂s
′′
b̂s
′′
b̂s
′′
b

ŝ′′b

Figure 10: Calculating the transition probabilities

If the time elapsed is less than the cost of the arc from sb to ŝ′b, the bus would still be in state sb, and

hence we set the value of F (.) in (10) to 1 if s′b = sb and to 0 otherwise. Instead, if tbe is greater than or

equal to the cost of the arc that connects sb to ŝ′b, the bus is assumed to travel for tbe − α(sb, ŝ
′
b) minutes

from ŝ′b and using the state ˆ̂sb, we ensure that none of the successor states of ŝ′b are realized (it is for this

reason that ties are broken in favor of non-garage states). The probability of reaching s′b is then obtained

using the previously calculated value of Pr
[
s′b|(ŝ′b, tbe − α(sb, ŝ

′
b), ˆ̂sb)

]
.

In order to illustrate the above procedure, we now derive the Pr[.] values used in Scenarios (i) and (ii).

27

Pr
[
(0,−2)|

(
(2, 12), 10, (3, 20)

)]
= p · F

(
(0,−2), (2, 12), 10, (3, 20)

)
+ (1− p) · F

(
(0,−2), (2, 12), 10, (3, 24)

)

= p · Pr
[
(0,−2)|

(
(3, 20), 2, (0,−2)

)]
+ (1− p) · 0 = p

Pr
[
(2, 12)|

(
(2, 12), 10, (3, 20)

)]
= p · F

(
(2, 12), (2, 12), 10, (3, 20)

)
+ (1− p) · F

(
(2, 12), (2, 12), 10, (3, 24)

)

= p · Pr
[
(2, 12)|

(
(3, 20), 2, (0,−2)

)]
+ (1− p) · 1 = 1− p

Pr
[
(2, 12)|

(
(2, 12), 10, (3, 24)

)]
=

1− p
1− p · F

(
(2, 12), (2, 12), 10, (3, 24)

)

= 1 · 1 = 1

Before concluding this section, we explain the reason behind the third case in (5) using the following

example. Suppose the bus in Figure 7 is at state (1,2). If tbe = 10, we expect the bus to be either at

(2,12) or at (0,−2), and thus we defined the cost of the arc between states (1,2) and (0,−2) to be 10.

Instead, if we set it to a value greater than 10, the expressions used to compute the transition functions

would incorrectly imply that the future state of the bus is either (2, 12) or (1, 2).

5 Demonstration

In this section, we apply the state space reduction methods and the dynamic program to a small portion

of the Austin transit network.

5.1 Network Description

Eight routes on the Austin transit network were chosen and the information available on the Capital

Metropolitan Transportation Authority’s website was used for this study. Table 3 shows a summary of

the input data.

Table 3: Input Data

Network Characteristics

No. of Routes 8
No. of Buses 48
No. of Nodes 78

Routes 3, 5, 7, 10 (NB and SB)
Period of Interest 6:00 AM - 12:00 PM

Figure 11 shows the routes and time points at which the scheduled arrival times for each trip were known.

All trips that begin between 6:00 AM and 12:00 PM were included in the model. A total of 78 stops

28

http://www.capmetro.org/

were considered, and the shortest walking time between each pair of nodes was obtained using the Google

Distance Matrix API. The implementation was carried out in C++ (using the g++ compiler with −O3

optimization flags) on a Linux machine with a 4 core Intel Xeon processor (3.47 GHz) and 12 MB cache.

Route 3 Route 5

Route 7 Route 10

Figure 11: Routes (Source: http://www.capmetro.org/)

Itineraries were constructed for each bus by manually assigning trips to buses. In some cases, buses were

assigned to trips along multiple routes (e.g., buses on route 10 also serve route 3). The current state

vector and the pmfs of transit arc costs were randomly generated (the support size of travel times on all

transit arcs was restricted to 2), and were used to construct the individual states of buses in the network.

29

5.2 Numerical results

Table 4 shows the number of individual states of buses after each stage of preprocessing for a problem

instance in which the value of λD was found to be 48 minutes.

Table 4: Results of individual state space elimination

Bus ID
Before Arrival time Phase I Phase II Phase I Phase II

elimination constraint (EAD) (EAD) (LAD) (LAD)

1 1178 19 11 8 8 8
2 5308 26 15 10 15 10
3 3625 19 − − − −
4 3750 4 − − − −
6 5200 22 18 14 18 14
7 5299 15 − − − −
8 3476 5 − − − −
9 3887 31 8 8 8 8
10 4978 26 11 5 11 5
11 2724 18 − − − −
12 2798 5 − − − −
14 4769 12 7 6 7 6
15 2779 8 − − − −
16 2888 4 − − − −
17 220 2 − − − −
18 3649 2 − − − −
20 2628 30 4 4 4 4
21 3752 15 10 8 10 8
22 3983 5 − − − −
23 3115 19 8 8 8 8
24 3844 19 − − − −
25 4218 3 − − − −
26 672 15 10 9 5 −
27 4584 11 − − − −
28 2979 12 − − − −
29 2908 5 − − − −
30 2882 4 − − − −
33 4199 15 8 8 8 8
34 2547 17 16 16 16 16
35 1093 14 − − − −
36 2843 7 − − − −
37 2930 3 − − − −
38 2885 2 − − − −

Product 4.26E+148 9.99E+31 7.49E+11 7.93E+10 2.72E+11 8.81E+09

The arrival time constraint column indicates the number of states for which t̃(sb) ≤ λD (buses that were

completely eliminated using this criteria are not shown in the table). Although the results of the Phase I

30

and II elimination methods are extremely appealing when examined in contrast with the initial number

of individual states, it would only be fair to compare them with the size of the individual state space

after imposing the arrival time constraint.

The plot in Figure 12 shows the logarithm of the cardinality of the Cartesian product of the individual

state space (which is larger but comparable to the size of the actual state space) for various preprocessing

steps. While the magnitude of the reduction in the state space is significant after Phase I, further

reduction due to Phase II appears to be marginal. As expected, more states were eliminated using the

LAD labels. However, we did not observe any reduction in the state space using the EOA labels.

148.63

32.00

11.87 10.9011.43 9.94

0

20

40

60

80

100

120

140

160

Magnitude of State Space Reduction

EAD Labels LAD Lables

Before elimination Arrival time constraint Phase I Phase II

lo
g
∏ b∈

B

|S
b
|

Figure 12: Reduction in the size of the individual state space

The magnitude of decrease in the size of the state space is primarily influenced by the EAD and LAD

labels, which in turn are affected by factors such as the OD pair, the density of the transit network, and

the pmfs of transit travel times. While the numerical results presented here roughly reflect the abilities

of the preprocessing methods, it is difficult to predict the performance of these methods when applied to

a different network. For instance, one might assume that having a denser network of buses would make

it easier to reach the destination within λD from any individual state, and hence fewer states may be

expected to be eliminated. However, in a dense transit network, the value of λD might be very low in

the first place.

31

After preprocessing using the EAD labels, Algorithm 1 was employed to construct the system state space,

the size of which was found to be about 9.37E+08. The action space was then populated as explained

in Section 4.2. Since it is reasonable to expect some threshold on the distance a transit user might walk,

we only considered walking arcs for which wij ≤ 15. The transition probabilities were then determined

using the Pr[.] values, and finally the value functions were computed using backward induction. Note

that the dummy arcs used to model slack could have a cost 0, and hence a few system states may be

equivalent to each other. Therefore, while implementing the backward induction algorithm, if the value

of a state is updated, it is necessary to simultaneously update the values of all of its equivalent states.

Table 5 shows the wall-clock times for preprocessing and the components of the dynamic program (the

time taken for the transition functions step only includes the time spent in estimating the Pr[.] values).

The results demonstrate that the state space reduction methods developed in this paper can improve the

computational tractability of the ATR problem. Further, as almost all the steps involved in solving the

ATR problem are parallelizable, one can expect near-linear speedup on shared memory systems.

Table 5: Wall-clock times in seconds for various stages of the ATR problem

Step Time (seconds)

Preprocessing 3.603
System space 37.388
Action space 3.986
Transition functions 0.011
Backward Induction 393.707

Total (including I/O) 444.566

Of the 12 buses that were not eliminated during the preprocessing stage, only 2 were used in the optimal

policy. A portion of the routes served by the two buses is shown in Figure 13. The origin and destination

of the traveler are represented by nodes 1 and 5 respectively. The current state vector indicates that the

individual state of the traveler and that of the bus on route 7 match, and that the bus on route 10 was

last seen at node 1 a few minutes before tO. Thus, the two a priori strategies available are to board the

bus on route 7 and walk to the destination from node 4 or to wait for another bus that serves route 10,

of which boarding the bus on route 7 is optimal and has an expected cost of 37.6 minutes.

32

7 SB

10 SB

1

5

2
3

4

5

2
3

4

Figure 13: Routes used in the optimal policy (dashed lines represent walking arcs)

On the other hand, the adaptive strategy suggests that the traveler boards the bus on route 7 and, based

on the information received while traveling, either gets off at node 4 or transfers to the bus on route

10 at node 3 (after choosing the walking arc (2,3)). The expected cost of the optimal adaptive strategy

was found to be 37.5025 minutes, reiterating the fact that the adaptive framework defined in this paper

outperforms the optimal a priori solution.

Since the probability distributions used in these calculations were randomly generated, no definite con-

clusions can be drawn on the magnitude of the benefits of using an adaptive strategy. In general the

travel time savings depend on several factors such as the OD pair, the pmfs, and the density of the

transit network. For instance, in the example in Figure 1, the expected travel time savings is 1.5 minutes,

which amounts to a 25% decrease when compared with the expected cost of the optimal a priori strategy.

Instead, if the travel time on arc (4,5) is either 1 or 4, the optimal cost of the a priori strategy and that

of the adaptive solution are the same.

33

6 Conclusions

In this paper, an adaptive transit routing problem is discussed in which a traveler seeks a strategy that

minimizes the expected cost of travel while ensuring that the destination is reached within a certain

threshold. The problem can be easily extended to include other modes of transit such as rail by including

train lines and trains in the set of routes and buses respectively. In practice, a major challenge in this

problem involves working with a large state space. We therefore emphasized reducing the size of the

state space by independent reduction of the individual state space of each bus because not all bus states

influence the optimal strategy. This process was facilitated by a few algorithms and assumptions on the

behavioral attitudes of travelers. A numerical experiment to illustrate these methods was also performed.

The ATR problem addresses the effects of congestion and its impacts on route choice and transfers

using adaptive strategies in a stochastic time-dependent transit network. Major contributions of this

paper include the state space reduction methods and the MDP formulation, which enable us to use a

vast amount of real time information that can potentially result in lower expected travel times when

compared with an a priori solution. Also, the bus based approach let us model strategies and the slack

in schedules between trips in a much broader and realistic manner when compared with traditional line

based approaches.

However, the proposed model is limited by the assumptions made, some of which are restrictive in nature.

For instance, the transit travel times are assumed to be independent of each other. In reality, buses on

routes that share arcs are likely to be affected by congestion in a similar manner. Another assumption

that limits the scope of the ATR problem has to do with a traveler’s reluctance in transferring multiple

times before reaching the destination. However, enforcing a constraint on the number of transfers in the

present model is difficult. Also, the effects of fares and capacity of buses have been ignored in the decision

making process.

34

The study of the ATR problem presents some useful pointers for future research. While the preprocessing

methods look attractive, an exact estimation of the optimal strategy may be hindered by the size of the

state space in larger networks. Since there exists more room for reducing the state space as noted in

Section 3.4, the combinatorial problem of selecting the set of buses that influence the optimal solution

needs further exploration. If the dynamic program remains intractable after the preprocessing stage, it

may be worthwhile to explore approximate dynamic programming (ADP) techniques to approximately

estimate the value functions (see Powell (2007) for an in-depth discussion on ADP).

It is also of prime interest to determine the value of information or the magnitude of travel time savings

of the proposed methods in comparison with a priori strategies or other existing adaptive approaches.

Although the ATR problem remains to be examined in greater detail, this paper develops a sound

theoretical framework and novel state space reduction techniques that contribute significantly to the

study of adaptive routing in transit networks.

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No.

1157294. The authors are solely responsible for any errors or omissions in this research paper. Spe-

cial thanks to two anonymous referees and the associate editor whose comments have greatly improved

the content and organization of this paper.

35

Appendix A Algorithms for preprocessing

Variants of the TDSP problem defined in Section 3.1 are non-trivial due to the bus schedule structure

and the possibility of transfers. In this appendix, examples and labeling algorithms for these problems

are presented and discussed in detail. Let SE be a scan eligible list, Γ(i) denote the set of nodes adjacent

to node i (i.e., j ∈ Γ(i) ⇔ (i, j) ∈ A), and Γ−1(i) represent the set of nodes from which node i can

be directly reached (i.e., j ∈ Γ−1(i) ⇔ (j, i) ∈ A). In the discussion that follows, it is assumed that

the reader is familiar with basic TDSP algorithms, a comprehensive summary of which can be found in

Chabini (1998).

A.1 Earliest Origin-to-All TDSP (EOA)

Recall that µn represents the EOA label of a node n, the earliest time by which n can be reached w.p. > 0.

We first define a time-dependent cost parameter ζij(t) ∀ t ≥ tO, i, j ∈ N as follows:

ζij(t) = min





min
b∈B, βb∈Ib,

(i,j)∈A(βb): t∈Tβb (i)

c1
βb

((i, j)) , wij





(11)

The cost of arc (i, j) for a departure time t, ζij(t), is set to the minimum of the walking travel time

between i and j and the lowest possible cost on the transit arc (i, j) served by buses that reach node i at

time t w.p. > 0. To illustrate the EOA problem, consider the network shown in Figure 14.

1 2 3

4

5

Route r1
Route r2

5 or 10 5 or 10

15 or 25

5

Figure 14: Network to illustrate the preprocessing algorithms

36

Suppose at t = 0, two buses b1 and b2 start at nodes 1 and 4 on routes r1 and r2 respectively. Let the

cost of the transit arcs be as shown in the figure and let the walking travel time along these arcs be 40

(for now, ignore the possibility of walking between other node pairs). Assume a traveler headed to node

5 departs from node 1 (origin) at t = 0.

The earliest the traveler can reach the destination is 20, which is possible if b1 reaches node 3 at t = 10 or

t = 15 and b2 takes 15 minutes to traverse arc (4,3). Observe that the EOA labels cannot be calculated

by assuming that all the buses in the network travel at their fastest pace. For instance, if the cost of arc

(4,3) was 5 or 10, and if buses take the lowest possible time to traverse arcs, the traveler would miss bus

b2. However, if bus b2 is delayed he/she can reach the destination at t = 15.

The pseudocode described below is a label correcting algorithm for one-to-all TDSP with waiting allowed

in which the time-dependent arc costs are defined using ζij(t). Starting with the origin, the algorithm

scans downstream nodes and updates their labels if the optimality condition is not satisfied. Nodes whose

labels change are added to the SE list and are examined later. The proof of correctness follows directly

from that of an one-to-all TDSP algorithm (see Chabini (1998)).

Algorithm 2 Pseudocode for EOA

Step 0: Initialize Labels
µO = tO
µn =∞ ∀ n ∈ N\{O}
SE = {O}

Step 1:
while SE 6= ∅ do

Remove a node i from SE
for each j ∈ Γ(i) do

for all t ≥ µi, t ∈ T do
if µj > t+ ζij(t) then

µj = t+ ζij(t)
If j /∈ SE add j

end if
end for

end for
end while

37

Assuming that the SE list is implemented using a queue structure, the computational complexity can

be shown to be O
(
|N |3|T |

)
using the following argument. First, notice that the label of the origin is

optimal. When the origin is removed from the SE list, the algorithm scans each of its adjacent nodes for

all time periods (which takes O (|N ||T |) steps) before guaranteeing the optimality of another node label.

In this process, the algorithm may add at most |N | − 1 nodes (the origin never re-enters as the arc costs

are non-negative) to the SE list. In order to permanently label a third node, the algorithm must remove

each of these |N | − 1 nodes and scan their adjacency lists which takes O ((|N | − 1)|N ||T |). Again, this

procedure may add at most |N | − 2 nodes to the SE list (note that the new nodes are always added at

the end of the queue). Proceeding similarly, we may conclude that the algorithm terminates in at most

|N ||T |+(|N |−1)|N ||T |+(|N |−2)|N ||T |+ . . .+(1)|N ||T | steps, and hence its computational complexity

is O(|N |3|T |).

A.2 Earliest All-to-Destination TDSP (EAD)

The EAD problem is a straightforward extension of the EOA problem. The time-dependent arc costs

ζij(t) defined earlier are used to compute γn(t), which represents the earliest we can reach the destination

w.p. > 0, given that we depart from node n at time t. The algorithm for the EAD problem first adds the

destination to the SE list and updates the labels of the upstream nodes in order to satisfy the optimality

criterion.

When t ≥ Tmax, we assume γn(t) = γn(Tmax), which reflects a steady state after time Tmax. This

assumption is not restrictive as long as Tmax is sufficiently large in which case, the time-dependent arc

costs equal the walking travel times. Algorithm 3 presents the pseudocode for estimating the EAD

labels which is similar to an all-to-one TDSP algorithm with waiting allowed. Note that waiting is

modeled using the self-loops of cost 1. The algorithm is guaranteed to converge to the optimal labels and

its computational complexity can be shown to be O
(
|N |3|T |2

)
(see Ziliaskopoulos (1994) for a formal

proof).

38

Algorithm 3 Pseudocode for EAD

Step 0: Initialize Labels
γD(t) = t ∀ t ≥ tO, t ∈ T
γn(t) =∞ ∀ n ∈ N\{D}, t ≥ tO, t ∈ T
SE = {D}

Step 1:
while SE 6= ∅ do

Remove a node j from SE
for each i ∈ Γ−1(j) do

for all t ≥ tO, t ∈ T do
if γi(t) > ζij(t) + γj(t+ ζij(t)) then

γi(t) = ζij(t) + γj(t+ ζij(t))
If i /∈ SE add i

end if
end for

end for
end while

A.3 Latest Origin-to-all TDSP (LOA)

This problem involves finding λn, the earliest time by which we are guaranteed to reach a node n given

that we depart from the origin at tO. To compute these labels, a modified label setting method is

applied, which ensures that all transfers are made w.p.1 by checking if the latest arrival time at a transfer

or boarding node is less than or equal to the earliest possible departure time of buses serving that node.

Consider the network shown in Figure 14. Clearly, the traveler can reach node 3 at t = 20 w.p.1. However,

the traveler could miss bus b2 (if it arrives at 3 at t = 15) and hence the LOA label of node 5 is 20+40=60.

Note that the LOA labels cannot be computed using a TDSP algorithm on a network with the longest

possible transit arc costs. Fixing the travel times on transit arcs to their largest possible values incorrectly

updates the label λ5 to 30 because one can catch the second bus after reaching node 3 at t = 20.

Consider the following approach. Given a node i, we check for the optimality of the labels of its down-

stream nodes (say j), allowing waiting at i, using a time-dependent arc cost set to the minimum of the

walking travel time wij and the largest possible cost on transit arc (i, j) experienced by a bus that can be

caught at node i w.p.1, assuming that it arrives at its last possible state (i.e., at lβb(i)). We begin with

39

the origin and nodes whose labels change can be added to a SE list and this procedure may be repeated

till list is empty. However, this approach might fail in some cases as demonstrated in Figure 15.

1 2

3

4

Route r1
Route r2
Walking arc

5 or 10

5

1
or

 1
0

5

Bus departs at t=5

Bus departs at t=0 20

Figure 15: Application of the LOA algorithm

Let two buses b1 and b2 start on routes r1 and r2 at t = 0 and t = 5 respectively. Assume the LOA labels

are computed for a traveler departing from node 1 at t = 0. Following the method described earlier,

the labels of nodes 2 and 3 are updated to 10 and 5 respectively. Upon examination of arc (2,4), the

algorithm concludes that b2 cannot be caught with w.p.1, and hence the label of 4 is modified to 30 using

the walking arc (2,4). Note that one cannot further reduce the label of node 2 using transit arc (3,2), and

hence the procedure terminates. The problem with this approach lies in the fact that sub-path optimality

does not hold. The traveler can board b2 w.p.1 after walking to node 3, and hence reach the destination

at t = 20 w.p.1. Therefore, when an arc is used to update the label of a downstream node, it is important

to check if a bus that traverses the arc could have been boarded at some other node in the network w.p.1.

In order to account for such cases, we define variables ϕb, which is set to 1 if a bus b can be boarded w.p.1

and ϕ′b, which stores the lowest possible order of the individual states of b at which it can be boarded

w.p.1. We initially set ϕb to 0 for all b ∈ B and when a node is examined, we update ϕb to 1 if a bus

traversing one of its downstream arcs can be boarded w.p.1. In this way, we can first make sure that ϕb

is 1 before using a transit arc served by b to update the label of a downstream node. Let us now apply

this method to the network in Figure 15. When node 3 is observed, ϕb2 is updated to 1 as we know that

b2 can be surely boarded. Thus, when 2 is examined, the transit arc (2,4) can be used to update the

40

label of node 4. However, the validity of this method hinges on the order in which nodes in the SE list

are scanned. Even if they are examined in the increasing order of labels, breaking ties arbitrarily can

result in incorrect label updates. Therefore, we scan all the downstream arcs of all the nodes with the

minimum label to update ϕb, after which we select a node, remove it from the SE list, and check the

optimality conditions for nodes adjacent to it.

We first define a parameter ςbij(t) ∀ t ≥ tO, i, j ∈ N , which is set to the difference between the latest arrival

times at nodes j and i assuming that a bus b serving a particular trip is at its last possible individual

state at node i.

ςbij(t) =




lβb(j)− lβb(i) if ∃ βb ∈ Ib, (i, j) ∈ A(βb) : t = lβb(i)

∞ otherwise
(12)

Observe that by Assumption 9, the difference in the latest arrival times in (12) is simply the largest

possible travel time experienced by bus b on arc (i, j) during trip βb.

Let Φn,t ⊂ B be the subset of buses that can be caught w.p.1 by a traveler at node n at time t (allowing

waiting), that is, Φn,t = {b ∈ B if ∃βb ∈ Ib : n ∈ N(βb), t ≤ fβb(n)}. Also let φn,t(b) denote the order

of the earliest possible state at which a bus b ∈ Φn,t can be boarded by a traveler at (n, t) w.p.1. An

indicator variable εi is used to check if node i was previously examined to update the ϕ values. Using

these parameters and definitions, we propose that the following algorithm computes the optimal LOA

labels.

Algorithm 4 Pseudocode For LOA

Step 0: Initialize Labels
λO = tO
λn =∞ ∀ n ∈ N\{O}
SE = {O}
ϕb = 0 ∀ b ∈ B
ϕ′b =∞ ∀ b ∈ B
εn = 0 ∀ n ∈ N

41

Step 1:
while SE 6= ∅ do

for all i : λi = mink∈SE λk, εi 6= 1 do . Step I
for all b ∈ Φi,λi do

ϕb = 1
ϕ′b = min{ϕ′b, φi,λi(b)}

end for
εi = 1

end for
Remove a node i : λi = mink∈SE λk . Step II
for each j ∈ Γ(i) do

for all t ≥ λi, t ∈ T do
dij(t) = wij
for all b ∈ B, βb ∈ Ib, i ∈ N(βb) : t = lβb(i), ϕ

′
b ≤ orderb

(
(i, t)

)
do

dij(t) = min{ςbij(t), wij}
end for

if λj > t+ dij(t) then
λj = t+ dij(t)
If j /∈ SE add j

end if

end for
end for

end while

In Step I, the algorithm updates the information on buses that can be caught w.p.1 from all nodes in the

SE list that have the least label and in Step II, it picks a node with the smallest label, scans its adjacency

list, and updates their labels (if necessary) using the walking travel time or the largest possible transit

travel times of buses that can be boarded w.p.1.

Proposition A.1. Algorithm 4 terminates in a finite number of steps and yields the optimal LOA labels

upon termination.

Proof. Suppose not. If the algorithm fails to terminate, there exists a node that enters the SE list

infinitely many times, and hence its label must be unbounded. This leads to a contradiction since the

dij(t)’s are non-negative. Hence, the algorithm converges in a finite number of iterations.

Now suppose that the labels obtained from the algorithm are not optimal. Then there exists a node j

such that λj is not optimal and λn is optimal for all {n ∈ N : λn < λj}. There also exists an optimal

42

path O− i1 − . . .− ik−1 − ik = i− j (which consists of waiting, walking, or transit arcs) that guarantees

that j can be reached before λj w.p.1. We allow repetition of nodes when the path contains waiting arcs.

Clearly, λi < λj and hence λi is optimal. But since λj is not optimal, it follows that λj > λi + dij(λi).

Note that in the optimal path, the arc from node i to j can either be a walking or transit arc.

If (i, j) represents a walking arc, a contradiction is obtained because the algorithm would have updated λj

in Step II. Now suppose (i, j) is a transit arc served by bus b. A similar contradiction can be established

in this case but we first need to check if the algorithm sets the value of dij(λi) to ςbij(λi). Suppose b

could have been boarded at a node j′ w.p.1. Using the fact that λj′ is optimal (since λj′ < λj), we may

conclude that the algorithm would have scanned j′ (before node j) and updated ϕ′b in Step I. Thus, when

node i is scanned, the algorithm would set dij(λi) to ςbij(λi) in Step II and the label of j would have been

updated. �

Proposition A.2. The computational complexity of Algorithm 4 is O
(
|N |2|T ||B|

)
.

Proof. When the algorithm first scans the origin’s adjacency list, at most |N | − 1 nodes may be added

to the SE list. In order to permanently label the next node, the algorithm uses Steps I and II which

require O (|N ||B|) and O (|N ||T ||B|) computations respectively. Since nodes do not re-enter the SE

list, permanently labeling the third node requires O ((|N | − 1)|B|+ |N ||T ||B|) steps. Repeating this

argument, we may deduce that |N ||B|+ (|N | − 1)|B|+ . . .+ (1)|B|+ |N | (|N ||T ||B|) is an upper bound

on the total number of computations and therefore, the complexity of Algorithm 4 is O
(
|N |2|T ||B|

)
. �

Alternately, the LOA labels can be computed using a recursive application of a TDSP algorithm by

varying the time-dependent arc costs. We first set the time-dependent arc costs to the walking arc travel

times and solve a TDSP to obtain the earliest time by which we can reach a node in the network. Using

these labels, we find the first stop at which a bus in the network can be boarded w.p.1. The time-

dependent arc costs are then updated assuming that the bus takes the longest possible time to traverse

arcs on trips beyond the stop at which it could be boarded w.p.1. The TDSP labels are computed again

43

and this process is repeated until the labels do not change.

Notice that if Assumption 9 is relaxed, the differences between the latest arrival times in (12) need not

be equal to the largest possible transit travel times. However, in such cases, using the definition of ςbij(t),

the reader may easily verify that the optimal LOA labels can still be obtained using Algorithm 4.

A.4 Latest All-to-Destination TDSP (LAD)

The LAD problem for each individual state of a bus finds the earliest we can reach the destination w.p.1,

assuming that the state of a traveler is same as that of the bus. To compute these labels (which are

denoted by η(sb)), we make minor modifications to the input parameters of the LOA algorithm and solve

it repeatedly for each individual state. Since the running time of the LOA algorithm is O
(
|N |2|T ||B|

)
,

the complexity of the LAD problem is O
((∑

b∈B |Sb|
)
|N |2|T ||B|

)
.

Let us revisit the example in Figure 14. The individual states and their corresponding LAD labels are

shown in Figure 16 for both buses b1 and b2. Consider the state (2,5) for the bus on the first route, i.e.,

b1 is at node 2 at t = 5. As the traveler can board b1, he/she can reach node 3 at t = 15 w.p.1, and can

successfully transfer to b2 and reach the destination at t = 30 w.p.1.

1 2 35 or 10 5 or 10

States 0 5
10

10
15
20

60 30
60

30
30
60

4 515 or 25 5

0 15
25

20
30

30 20
30

0Labels

3

0

Figure 16: LAD labels of individual states of bus b1 (left) and b2 (right)

Since the traveler’s individual state is same as that of the bus b, he/she can board b w.p.1. Therefore, in

the initialization step of the Algorithm 4, we set ϕb = 1 and ϕ′b = orderb(sb). Note that the origin of the

traveler is ñ(sb) and hence λñ(sb) = t̃(sb). The LOA algorithm may then be used to calculate the label of

the destination (which is the LAD label for state sb).

44

List of Figures

1 Illustration of adaptive routing in transit networks . 2

2 Individual states of a bus . 9

3 Individual states of a bus in the garage . 10

4 Light cones and the relevant states of a bus in the network 14

5 Elimination of the individual states of a bus . 16

6 Acyclic network of individual states marked using EAD labels 17

7 Phase I (left) and Phase II (right) elimination of individual states 18

8 Acyclic network of individual states marked using LAD labels (left) and the individual

states from Phase I (right) . 19

9 Drawbacks of the preprocessing techniques . 21

10 Calculating the transition probabilities . 27

11 Routes (Source: http://www.capmetro.org/) . 29

12 Reduction in the size of the individual state space . 31

13 Routes used in the optimal policy (dashed lines represent walking arcs) 33

14 Network to illustrate the preprocessing algorithms . 36

15 Application of the LOA algorithm . 40

16 LAD labels of individual states of bus b1 (left) and b2 (right) 44

45

References

Chabini, I. (1998). Discrete dynamic shortest path problems in transportation applications: Complexity

and algorithms with optimal run time. Transportation Research Record, 1645:170–175.

Chriqui, C. and Robillard, P. (1975). Common bus lines. Transportation Science, 9(2):115.

de Cea, J. and Fernández, E. (1993). Transit assignment for congested public transport systems: An

equilibrium model. Transportation Science, 27(2):133–147.

Gentile, G., Nguyen, S., and Pallottino, S. (2005). Route choice on transit networks with online informa-

tion at stops. Transportation Science, 39(3):289–297.

Hall, R. W. (1986). The fastest path through a network with random time-dependent travel times.

Transportation Science, 20(3):182 – 188.

Hickman, M. D. (1994). Assessing the impact of real-time information on transit passenger behavior.

PhD thesis, Massachusetts Institute of Technology.

Hickman, M. D. and Bernstein, D. H. (1997). Transit service and path choice models in stochastic and

time-dependent networks. Transportation Science, 31(2):129–146.

Hickman, M. D. and Wilson, N. H. (1995). Passenger travel time and path choice implications of real-time

transit information. Transportation Research Part C: Emerging Technologies, 3(4):211 – 226.

Huang, H. and Gao, S. (2012). Optimal paths in dynamic networks with dependent random link travel

times. Transportation Research Part B: Methodological, 46(5):579 – 598.

Miller-Hooks, E. D. (2001). Adaptive least-expected time paths in stochastic, time-varying transportation

and data networks. Networks, 37:35–52.

Miller-Hooks, E. D. and Mahmassani, H. S. (1998). Optimal Routing of hazardous materials in stochastic,

time-varying transportation networks. Transportation Research Record, 1645:143–151.

46

Miller-Hooks, E. D. and Mahmassani, H. S. (2000). Least expected time paths in stochastic, time-varying

transportation networks. Transportation Science, 34(2):198–215.

Nguyen, S. and Pallottino, S. (1988). Equilibrium traffic assignment for large scale transit networks.

European Journal of Operational Research, 37(2):176–186.

Nguyen, S. and Pallottino, S. (1989). Hyperpaths and shortest hyperpaths Combinatorial Optimization.

In Combinatorial Optimization, volume 1403 of Lecture Notes in Mathematics, chapter 10, pages 258–

271. Springer Berlin / Heidelberg.

Nguyen, S., Pallottino, S., and Gendreau, M. (1998). Implicit enumeration of hyperpaths in a logit model

for transit networks. Transportation Science, 32(1):54–64.

Nielsen, L., Pretolani, D., and Andersen, K. (2004). K shortest paths in stochastic time-dependent

networks. Technical Report WP-L-2004-05, Department of Accounting, Finance and Logistics, Aarhus

School of Business.

Nielsen, L. R., Andersen, K. A., and Pretolani, D. (2003). Bicriterion shortest hyperpaths in random

time-dependent networks. IMA Journal of Management Mathematics, 14(3):271–303.

Nielsen, L. R., Andersen, K. A., and Pretolani, D. (2014). Ranking paths in stochastic time-dependent

networks. European Journal of Operational Research, 236(3):903 – 914.

Polychronopoulos, G. H. and Tsitsiklis, J. N. (1996). Stochastic shortest path problems with recourse.

Networks, 27:133–143.

Powell, W. B. (2007). Approximate Dynamic Programming : Solving the Curses of Dimensionality. John

Wiley & Sons, Hoboken, New Jersey.

Pretolani, D. (2000). A directed hypergraph model for random time dependent shortest paths. European

Journal of Operational Research, 123(2):315–324.

47

Provan, J. S. (2003). A polynomial-time algorithm to find shortest paths with recourse. Networks,

41(2):115–125.

Rambha, T. (2012). Adaptive routing in schedule based stochastic time-dependent transit networks.

Master’s thesis, The University of Texas at Austin.

Spiess, H. and Florian, M. (1989). Optimal strategies: A new assignment model for transit networks.

Transportation Research Part B: Methodological, 23(2):83–102.

Waller, S. T. and Ziliaskopoulos, A. K. (2002). On the online shortest path problem with limited arc cost

dependencies. Networks, 40(4):216–227.

Wu, J. H., Florian, M., and Marcotte, P. (1994). Transit equilibrium assignment: A model and solution

algorithms. Transportation Science, 28(3):193–203.

Ziliaskopoulos, A. K. (1994). Optimum Path Algorithms on Multidimensional Networks: Analysis, Design,

Implementation and Computational Experience. PhD thesis, The University of Texas at Austin.

48

	Introduction
	Problem Description
	Notation
	Assumptions
	Constructing the individual states of a bus
	Formal definition of the ATR problem

	Preprocessing procedure
	Preview of preprocessing methodology and Light Cones
	Elimination of individual states using EAD/LAD labels
	Elimination of individual states using EOA labels
	Remarks on the elimination procedure

	Dynamic programming framework for the ATR problem
	State space
	Action space
	Transition functions

	Demonstration
	Network Description
	Numerical results

	Conclusions
	Algorithms for preprocessing
	Earliest Origin-to-All TDSP (EOA)
	Earliest All-to-Destination TDSP (EAD)
	Latest Origin-to-all TDSP (LOA)
	Latest All-to-Destination TDSP (LAD)

