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ABSTRACT 1 
A substantial amount of urban traffic is related to drivers searching for parking.  This paper 2 
develops an online stochastic shortest path (SSP) model to represent the parking search process 3 
in which, drivers must choose whether to park at an available space or continue searching for a 4 

space closer to the destination.  Existing online shortest path algorithms have been formulated 5 
for the “full reset” or “no reset” assumptions on revisiting links.  As described in this paper, 6 
neither is fully suitable for the parking search process. Accordingly, this paper proposes an 7 
“asymptotic reset” model which generalizes both the “full reset” and “no reset” cases and uses 8 
the concept of “reset rate” to characterize the temporal dependence of parking probabilities on 9 

earlier observations. In this model, drivers try to minimize their expected travel cost, which 10 
includes driving cost and the cost of walking from a parking spot to the actual destination 11 

conditioned on the parking availability on   most recently traversed links. The problem is 12 
formulated as a Markov decision process and is demonstrated using a network representing the 13 

neighborhood of the University of Wyoming campus. The case study successfully shows the 14 
“extra time” used by drivers to cruise for an acceptable parking space and also illustrates the 15 

impact of   on the computational effort required to compute an optimal policy.  16 

 17 
Keywords: Markov decision process, parking search, stochastic shortest path, history dependence 18 
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1. INTRODUCTION 1 
With vehicle ownership rates peaking in the U.S. and rising in most other countries across the 2 
globe (1), the impact of parking on urban transportation networks, urban development, the 3 
environment, and the lives of individuals are becoming more pronounced. In urban centers where 4 

space is limited and cars are prevalent, parking shortages cause drivers to “cruise” for parking, a 5 
frustrating endeavor both for drivers and city planners(2). By averaging the results of ten 6 
different international studies, Shoup found that approximately 34% of congestion in urban areas 7 
consists of people “cruising” for parking (1). Analyzing the problem from a driver’s perspective, 8 
a study in Frankfurt showed that searching for a parking spot during peak hours accounted for as 9 

much as 40% of the total travel time for journeys to central urban areas (3). 10 
Clearly, there is a need for city planners to better manage parking in their jurisdictions – 11 

steps which are possible due to the recent trend by youth away from personal vehicles (4, 5). 12 
While recent programs in San Francisco (6), Boston (7), Seattle, Washington D.C., and 13 

elsewhere (8) can provide much-needed data, sophisticated and accurate parking models are 14 
needed to help forecast the effects of changes in capacity, pricing, and strategies aimed at 15 

reducing the number of single person trips by car. Similarly, more accurate parking guidance 16 
systems would significantly reduce congestion, enabling the rest of the network to run more 17 

efficiently.  18 
Unfortunately, existing parking search models usually make extreme simplifying 19 

assumptions and may not be able to capture real parking behavior. For instance, based on the two 20 

parking regimes they propose, Arnott and Inci (9) assume that if vacant spaces are present, 21 
drivers will not cruise for parking. Leurent and Boujnah (10) assume that if a driver’s first choice 22 

for parking is not available, they will continue transferring to other lots based on discrete-choice 23 
derived probabilities, implying an absence of circling. The two papers present the typical 24 
assumptions on parking search models. They assume that travelers will follow the shortest path 25 

to their ideal parking spot closest to the destination, and if no space is available, travelers 26 

continue searching until they find one. Under these assumptions, the probabilities of finding 27 
parking at any location do not depend on past parking availability history. 28 

In reality, since drivers are unaware of the exact likelihood of finding parking near their 29 

destination and circling wastes time, they will typically pay attention to availability as they 30 
approach the area. Their parking choice will then be a memory-influenced decision, where they 31 

circle back to a previously seen spot if necessary. To model this reality, this paper proposes a 32 
stochastic parking search approach with recourse which incorporates memory of parking 33 

availability on recently-traversed links. Drivers may use this information to reevaluate their route 34 
and parking choice every time they get to a new network link. In our model drivers seek to 35 
minimize their total expected travel time, driving plus walking, though this disutility function 36 
could easily be adapted to incorporate fees, search time, or a host of other characteristics. We 37 

name our approach an “asymptotic reset” model, as it generalizes the “reset” and “no reset” 38 
formulations identified by Provan (11).  39 

The subsequent sections of this paper are organized as follows. Section 2 discusses 40 

previous research on parking and the other modeling apporaches. Section 3 presents our model 41 
and solution methods. Section 4 provides a case study, using the University of Wyoming campus 42 
network. It details how to apply our model in practice and explains how drivers optimize their 43 
decision making. In Section 5, concluding remarks and suggestions for future work are provided. 44 
 45 
 46 
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2. OVERVIEW OF EARLIER STUDIES 1 
Recognizing the impact of parking searches on urban congestion, many studies have been 2 
conducted using economic, statistical, and optimization frameworks on various aspects of 3 
parking. Based on the approach taken, these models can be classified into three groups: discrete 4 

choice based approaches, simulation based approaches, and network assignment based 5 
approaches. 6 

Both discrete choice and simulation approaches examine parking choice explicitly. 7 
Discrete choice models work at the macro level, using random utility theory to understand 8 
parking choice as a function of various driver and parking facility attributes. Such models differ 9 

in their complexity, with some utilizing the multinomial logit model (12, 13, 14), and others 10 
using mixed multinomial logit (15, 16), or nested logit models (17). However, by neglecting the 11 
network structure, discrete choice models are unable to model the stochastic and adaptive nature 12 
of the parking search process, as drivers sequentially traverse roadway links which may or may 13 

not have available parking. 14 
In contrast with discrete choice models, simulation models try to capture the parking 15 

search at the micro level. Thompson and Richardson (18) developed an analytical model to 16 
mimic the search process where the disutility of a car park location was defined as a function of 17 

in-vehicle travel time, in-car park search time, waiting time, fees, fines, and walk time. Other 18 
researchers (19, 20, 21, 22) have adopted agent-based approaches where the behavioral and 19 
parking decision making rules were assigned to the drivers. At issue with micro-simulation 20 

models however, is that their size must be restrained due to computational complexity and to 21 
date none fully address the dynamic effects that congestion and parking choices have on one 22 

another (22). 23 
Also working at the macroscopic level, network approaches based in equilibrium 24 

assignments are regarded for their ability to successfully model the interaction between road 25 

traffic and parking choices (23). Like non-network models, network approaches are predicated 26 

on individuals choosing parking locations which maximize their utility or minimize travel costs, 27 
though they try to simulate the parking choice implicitly (24). Hall (25) developed a recursive 28 
algorithm to solve shortest paths in networks where arc costs were random and time-dependent. 29 

Introducing the concept of recourse, Polychronopoulos and Tsitsiklis (26) proposed a 30 
formulation where arc costs are learned progressively as an end-node of an arc is visited, 31 

enabling policies to include cycling and corrective actions where information gathering is 32 
beneficial. Waller and Zilaskopoulos (27) analyzed networks with spatial dependence and 33 

temporal dependence of arc costs in further detail, showing that “online optimum paths 34 
outperform offline shortest paths by up to 40% under certain conditions.” Provan (11) provided a 35 
polynomial-time algorithm for solving shortest paths with recourse where arc lengths are 36 
determined by a Markov process and reset upon each traversal. Even these models (9, 10, 11, 25, 37 

26, 27) which capture the unknown and stochastic nature of arc costs do not incorporate any kind 38 
of memory-based decisions, a key feature of the individual parking search, and typically assume 39 
either “full reset” or “no reset” conditions, to use the language of Provan (11). In the context of 40 

parking, “full-reset” implies that the probability of finding parking on a link remains the same 41 
every time a driver visits the link, even if he/she previously observed the parking availability on 42 
that link. “No reset”, on the other hand means that if a driver cannot park a link, he/she would 43 
never find a parking space on that link, no matter how long before returning. Clearly neither 44 
assumption well-characterizes the parking search problem. 45 
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Therefore, the contribution of this paper is to include a “memory” for the traveler, in 1 

which the probability of finding parking after traversing a link gradually resets to an a priori 2 
probability as the time since traversal increases, a formulation we term “asymptotic reset”.  This 3 
formulation generalizes the “full reset” and “no reset” formulations, which can be obtained as 4 

special cases. Incorporating the concepts discussed above, our model treats the individual 5 
parking search as a Markov decision process (MDP), examining whether a node has been visited 6 
previously, and then using that information to influence the probability of finding parking at that 7 
link in the near future. 8 

 9 

3. METHODOLOGY 10 
 11 
Notation and Problem Description 12 

Let            be an undirected graph/network, where     represents the set of nodes and 13 

   consists of arcs/links. The set    is defined as     
    

 , where   
  is the set of actual 14 

intersections in the network and   
  denotes a set of dummy nodes. Similarly,    is comprised of 15 

actual roadway links (  
 ) and a set of dummy links (  

  . The construction of dummy nodes and 16 

links, and their function will become evident in the example discussed later. Assume         17 

represents the dual graph of   , i.e.,      and a link   {   }     where          18 

   and   are arcs in   with a common end point. In other words, the nodes in   represent arcs in 19 

    and the arcs in   represent turn movements in    . We also refer to    as the original 20 
graph/network and refer to the dual graph simply as graph/network. Although the parking search 21 

process can be formulated on the original network, the dual graph lets us think of decisions as 22 
being made at nodes rather than on links. 23 

The cost of an arc      
  is denoted by    

 and is static and deterministic. The 24 
corresponding node in the dual network is assumed to be equidistant from its end-points. With 25 

the exception of the dual nodes and arcs created from the dummy nodes, and links of the original 26 

network, the cost of an arc   {   }    is defined as       
    

     . The choice of the 27 

dummy link costs will be explained later using an example. Let the walking travel time from 28 

node      to the destination be      The prior probability of finding parking at a node     is 29 

also assumed to be known and is denoted by   . 30 

As drivers travel through the network, they are assumed to remember if a previously 31 

traversed node had parking ( ) or not (  ). However, this ability to retain information is also 32 

assumed to be limited to the   nodes (excluding the current node of the traveler) that were most 33 

recently visited. The value of  , also called the memory limit, is a parameter of the model. Let 34 

the set   {    } represent the parking conditions at a node. The state of a driver   is then 35 

defined using an    -dimensional vector of ordered pairs (                              ), 36 

where                ,                and    –              represents a path (with 37 

cycles allowed) of the most recent  -nodes visited. The current node at which the traveler is 38 

present,   , is also represented by     ; and the current parking availability,   , is denoted by 39 

    . The set of all states or the state space is denoted by  . At each state the driver may choose 40 

to park (only if         or continue to drive. For each decision at    the driver may find 41 
himself/herself at a subset of states with some known probability. The parking search problem 42 
can thus be formulated as an MDP in which drivers use an adaptive strategy or policy that is 43 

conditional on their current state. The objective of the problem is to find a policy that minimizes 44 

the expected cost of reaching the destination. The list of symbols used is shown in Table  . 45 
 46 
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TABLE 1   List of Symbols 1 
Symbol Description 

  Set of nodes in the dual network 

  Set of links in the dual network 

   State space 

   Cost of travel on link  , where     

   Prior probability of finding parking at node  , where     

   Walk time to destination from node  , where      

     The current node at which the traveler is present in state     

     Parking availability at node     , where     

     Adjacency list of node   (nodes that are directly connected to  ), where      

X(s) Decision space at state  , where     

   Reset rate at node  , where     

V(s) Value function of state  , where     

 2 
Assumptions 3 
In modeling the parking search process as an MDP the following assumptions are made: 4 

1. The network is undirected and    represents the probability of finding parking along 5 
either sides of a link in the original network. This assumption is not restrictive and 6 
extending the proposed model to directed network is straightforward.  7 

2. The traveler is experienced enough to have a knowledge of the arc costs and prior 8 

probabilities of finding parking. 9 

3. The model does not capture the effect of parking fee. However, this can be easily 10 
incorporated by introducing node costs and minimizing the expected generalized cost of 11 
travel. 12 

4. Travelers are willing to walk to the destination from any node in the network. In practice, 13 
we may select a small sub-network around the destination only considering nodes for 14 

which walking is feasible or alternately, set the walking costs to a sufficiently large value. 15 
5. The walking distance from a link in the original network to the destination does not 16 

depend on the location at which the traveler parks. This simplification is reasonable 17 
unless links in the original network are extremely long. However, such an assumption is 18 

not binding as we can split a long link into shorter ones and model the search process on 19 
the resulting network. 20 

6. The transition probabilities depend on whether a node that a driver considers to visit 21 
features in his/her current state vector, the time elapsed since it was last visited, and a 22 

reset rate parameter (      The reset rate is a measure of how quickly parking probabilities 23 
reset to their priors. In practice, this rate depends on the arrival and departure rates of 24 
travelers which in turn depend on factors such as land use of the neighborhood, parking 25 

meter rates and presence of special events. This assumption is a key characteristic of this 26 
paper and is a generalization of the full reset and no-reset versions of SSP problems. A 27 
more detailed description of the transition probabilities will follow later. 28 

 29 

An Example   30 
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 1 
 2 

FIGURE 1   An example of the parking search process. 3 
The following example illustrates the MDP formulation of the parking search problem. Consider 4 

the network shown in Figure  . The left panel contains the original network. The dual nodes 5 
(shown in grey) are superimposed on the arcs of the original network. Assume that the traveler 6 

departs from node  . The dummy nodes and arcs are shown in dotted lines. The travel cost of 7 
each arc and the walking time to the actual destination (shown in boxes) are displayed on the 8 

links. We create     dummy nodes and arcs (  is assumed to be   in this example) in ‘series’ 9 

and connect it to the source node, i.e., node  . These dummy nodes and links are constructed 10 

because when a traveler starts at the origin, he/she has no memory of links traversed. In order to 11 
define the state of the traveler in such situations we assume that he/she had traversed these 12 

dummy links before arriving at node  .  13 

The resulting dual network is shown in the right panel of Figure  . Arc {   } in original 14 

network is node   in the dual network; arc {   } is node  , and so on. Thus, the dual nodes 15 

created from   
  are       and  . The origin node of the traveler in the dual network is node  . 16 

The cost of arc {   } in the dual network is set to          as dual node   is assumed to be 17 

located midway of arc {   } in the original network. The cost on all remaining dummy links in 18 

the dual network (i.e., ones not connected to the dual nodes created from   
 ) are set to    Also, 19 

since the dummy nodes in the dual network are non-existent in reality, the walking distances to 20 

the destination and the parking probabilities are set to   and   respectively.  21 

Assume that the probability of finding parking at nodes     and   in the dual network is 22 

    and the probability of finding parking at node   is    . In the full reset case, the traveler’s 23 
state is defined using his/her current node and the availability of parking at it. The optimal 24 

solution under the full reset version prescribes a traveler to first choose path         and 25 

park at node   if possible and walk to the destination. However, if parking is unavailable at 26 

node  , the policy suggests to cycle between nodes   and   until parking is found at node  . The 27 

optimal expected cost of the policy was found to be      units. Although this variant of the 28 
parking search problem is easy to solve, the probabilities of finding parking reset to the prior 29 

probabilities each time the driver revisits a node. This is unrealistic as travelers would update 30 
their beliefs of finding parking based on their previous experiences.  31 

Hence, we propose an asymptotic reset version which assumes that the probability of 32 

finding parking depends on the state vector. For instance, if a driver cannot park at node  ; when 33 

at node  , the probability of finding parking at node   is updated to a value less than     since 34 
he/she could not find parking at an earlier point in time. This value is modeled to depend on the 35 

time taken to travel back and forth between node  , i.e.,    units, and the reset rate at node  . 36 

However if node   does not appear in the current state of the traveler, even if it was previously 37 

visited (i.e., the traveler forgets having visited node  ), the probability of finding parking at node 38 
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  is reset to 0.5. The optimal expected cost for the asymptotic reset version was found to be 1 

      units and can be obtained from the value of any one of the states  (             ) , 2 

where        . Unlike the full-reset case the optimal policy is harder to describe as it explores 3 

node   and also suggests parking on nodes   and   if parking was unavailable at node    4 
In this section, we discuss the components of the Markov decision process used to model 5 

the parking search problem: the state space, decision space, transition probabilities and the value 6 
functions. The value iteration algorithm used to compute the optimal policy is also explained.  7 
 8 

State Space 9 
As discussed earlier, the state space consists of the most recently visited nodes and the parking 10 
availability at each of these nodes. Populating the state space requires enumeration of all paths 11 

containing   arcs. An efficient way to enumerate such paths using repeated breadth first search 12 

(BFS) is outlined in the following pseudocode. Let       represent the set of nodes which can be 13 

reached from node   by traversing at most   arcs. Suppose the set of all paths of size   is 14 

denoted by  . Without being mathematically rigorous, the state space can be expressed as   15 

    . Note that an element of        is of the form (                             ), 16 

where as an element of   is of the form (                              )   17 

Psuedocode State space construction 

for all     do 
       Perform BFS with   as the origin 
       Store the BFS distance labels (shortest number of arcs required to reach each node) 
       for          do 
              Populate       using the BFS labels 
      end for 
       Set         

        
       Scan each element of    and discard infeasible paths 
end for 
        

 18 
Decision Space 19 

The set of decisions available at state  , denoted by       can be defined as follows: 20 

      {
 (    )  {           }               

 (    )                                              
             21 

In the first case, the driver can park and walk to the destination or continue to drive to 22 

one of the adjacent nodes. However, if parking is unavailable at the current state (second case), 23 

the driver has no option but to drive to a node in  (    )  24 

 25 
Transition Probabilities 26 

Given a state   (                              ), and a decision    (    )  the transition 27 

probabilities, denoted by      |      specifies the probability of reaching the state     28 

(                        ) . Notice that the probability of reaching state 29 

    (                         )        |      is        |           |     depends on 30 

whether node   appears in   and if it does; it is a function of the time elapsed ( ) between recent 31 
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revisits to node   which is equal to the cost of path                      where    1 

 {       } and          {      }. Let    {    }   {     }     {      } represent the 2 

cost of this path. The transition probabilities are assumed to be governed by the following 3 
equations:  4 

     |     {
  (       )                                

          
                            

 

Figure   shows the variation of the transition probability with time. The probability of 5 
finding parking is reset to the prior probabilities in an asymptotic manner. As mentioned earlier, 6 
these equations help us formulate an intermediate version of the full and no-reset SSP models. In 7 

fact, the full and no-reset versions are special cases of this model and can be solved by setting   8 

to   and   respectively. If node   does not appear in state   , the conditional probability of 9 

finding parking      |     is simply assumed to be     10 

 11 

FIGURE 2   Asymptotic reset of transition probabilities. 12 
 13 

Value Functions 14 

The optimal value function      is the least expected cost of reaching the destination from  . 15 
Using the notation defined in the previous section, Bellman’s equations can be written as 16 

follows: 17 

                    
         

{ {      }       |                |          } 

                  {     
   (    )

{ {      }       |                |          }       } 

The optimal values of the states can be computed using the Gauss-Seidel variant of value 18 
iteration, a pseudo code for which is presented below. The algorithm iteratively updates the 19 
values of each state using the above optimality criteria and terminates if the change in values 20 

across successive iterations is less than a given tolerance level    The algorithm is guaranteed to 21 

converge and upon termination the value functions can be used to construct an  -optimal policy 22 

(see Bertsekas(28)). 23 
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Psuedocode Value Iteration – Gauss-Seidel Method 

Step 0: Initialization 
                       

                    
          = 1 
    
 
Step 1:  
for all      do 
        if         then 

          
   (    )

{ {      }       |                   |             }   

                           if |     –        |      then           = 0   

                                          

       else 

         {     
   (    )

{ {      }       |                   |             }       } 

               if |     –        |      then           = 0   

                             

       end if 
end for 
 
Step 2: 
If              then terminate the algorithm.       is the value of state   under the  -optimal 
policy. Else update        , terminate = 1 and go to Step    

 1 
4. CASE STUDY 2 
This section contains a case study of the parking search model. A network representing the main 3 

campus of the University of Wyoming (UW), Laramie, WY, was used for this demonstration. 4 

The network consists of    nodes and    arcs (see Figure  ), and the destination is closest to 5 

node   (represented by a black circle). All results are discussed using the original network and 6 
not it’s dual. A graduate student estimated the prior parking probabilities on these arcs over 10 7 

days, which suffices for the purpose of this demonstration. A constant reset rate   was used for 8 
all links in the network. The implementation was carried out in C++ (using the g++ compiler 9 

with -O3 optimization flags) on a Linux machine with a   core Intel Xeon processor (     GHz) 10 

and    MB Cache. A tolerance (   of      was used in this case study. 11 

 12 

Excess Cost of Parking 13 
Most transportation models assume that trips begin and end at nodes and parking is not explicitly 14 
modeled. However, in reality one is likely to drive around the destination until a suitable parking 15 

spot is found resulting in longer trip travel times. In this section, we study the expected increase 16 
in trip duration by comparing the shortest path cost of reaching the destination and the expected 17 

cost of the optimal policy. The values of   and    were set to   and   respectively. 18 
 19 
 20 

 21 
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FIGURE 3   Impact of parking on trip costs. 1 
 2 

Figure   shows the links used in the shortest path and the optimal policy for two origins 3 

   and   . As expected, the optimal policy explores more links either because of the lack of 4 
parking or due to the anticipation of finding a better parking spot. The expected cost of the 5 

adaptive strategy was found to be approximately twice as much as the shortest path cost. Notice 6 
that most of the arcs that are revisited are centered around the destination. 7 

 8 

Effect of Memory  9 
From a theoretical standpoint, it would be ideal to compute a policy based on an infinite 10 

memory. One could assume that the driver is assisted by a navigation system which keeps track 11 
of parking conditions on all traversed links. However, as the memory limit is increased, the size 12 

of the state space grows exponentially and the problem ends up being computationally 13 

intractable. For instance, as can be seen from Table  , the size of the state space for a memory 14 

limit of   was found to be nearly     million and the wall clock time for computing the optimal 15 

solution was approximately   minutes. The performance of the Gauss-Seidel method was also 16 

tested by imposing an ordering (in Step   of the algorithm) in which, using the BFS labels, the 17 
states whose current nodes were closer to the destination were scanned first. The results (shown 18 

in Table   ) indicate a marginal improvement in the number of iterations required for 19 
convergence. 20 

We explored the performance of the  -optimal policy under different memory limits in an 21 
“infinite memory setting” using Monte Carlo (MC) simulations. Specifically, at each state, the 22 
probabilities of finding parking were drawn from a distribution that is a function of the infinite 23 

memory (which comprises of the parking conditions on nodes visited since the start of the trip), 24 

but the policy used prescribes a decision only based on the state of the traveler (with finite 25 

memory). The following table shows the expected cost of the  -optimal policy for memory limits 26 

  through   and an estimate of expected cost of the policy under the infinite memory setting. The 27 

origin for this example was node  . A sample size of     was used for the MC simulations. The 28 
confidence intervals for the estimated expected costs are reported. The computational time for 29 
the MDP in seconds and the sizes of the state space are also shown. As the memory limit 30 
increases, the gap between the optimal solution and the MC estimate of the optimal strategy 31 

decreases as expected and captures the trade-off between the optimal solution and its 32 
computational cost. 33 
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TABLE 2   Results of the MDP for Different Memory Limits 1 

  
 -  optimal 

solution 

MC estimate of 

the  - optimal 

policy 

Estimate 

of stdev 
95% CI 

Computation 

time (in sec) 

w/ordering 

State 

space 

size 

# iterations 

w/ ordering 

# iterations 

w/o ordering 

1 4.06966 7.05037 5.85829 (6.88799,7.21275) 0.225 556 62 67 

2 4.55313 5.52018 3.49695 (5.42325,5.61711) 0.346 5640 62 64 

3 4.55313 5.52805 3.54122 (5.42989,5.62621) 3.067 58352 62 64 

4 4.64683 5.24363 3.08402 (5.15815,5.32911) 32.095 611424 60 69 

5 4.72728 5.00112 2.27721 (4.93800,5.06424) 442.869 6457664 70 71 

 2 

Location of trip ends 3 
Lack of parking at a parking spot close to the destination may force drivers to park on nearby 4 

links and walk. Figure   shows the percentage of trips that end on links in the network computed 5 

by simulating the policy in an infinite memory setting for two values of  . It is interesting to note 6 

that as   increases, travelers are more likely to park closer to the destination. This is because for 7 

higher    the probabilities reset to their prior values faster and thus the search process mimics the 8 
full-reset version. Hence, it is advantageous to revisit links that are closer to the destination.  9 

 10 

 11 

 12 
 13 

FIGURE 4   Percentage distribution of trip ends. 14 
 15 

5. CONCLUSIONS 16 
This paper formulates the parking search process as an online shortest path problem, developing 17 
the “asymptotic reset” model to incorporate memory of the parking status of links visited before.  18 
This online shortest path problem identifies a routing policy specifying whether drivers will 19 

choose to park at an available space or continue to search.  Unlike previous research in this area, 20 
this approach simultaneously recognizes the stochasticity inherent in the parking search process, 21 
and represents the spatiotemporal characteristics of the underlying network structure. The case 22 
study demonstrates this model in a network representing a neighborhood near the University of 23 
Wyoming, analyzing the sensitivity of the solution to memory size and the value of the “reset 24 

rate” parameter.  25 
This paper lays the foundation for future research in several directions. First, spatial 26 

correlations can be accounted for, in that parking availability or lack of availability on particular 27 
links provides partial information on the likely parking availability on other links. More 28 
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sophisticated cost functions could account for parking fees, consecutive parking time limitations, 1 

and other factors. A flow dependent or time dependent a priori probability of the parking 2 
availability can be introduced in future study. For instance, this stochastic shortest path 3 
formulation may be usable as the basis for an equilibrium algorithm involving many drivers, in 4 

which the probability of finding parking on a link depends on the search patterns used by all 5 
drivers. 6 

 7 
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