
CE 273
Markov Decision Processes

Lecture 9

Policy Iteration

Lecture 9 Policy Iteration



2/31

Previously on Markov Decision Processes

Practically, a cost of c units in one future time-step is equivalent to incurring
αc now, where 0 ≤ α < 1. More generally, cost c at time step n is equivalent
to αnc now.

One interpretation of α is that it reflects the interest rate. Another grim way
to look at is to assume that time is finite, and the future may not happen with
probability (1− α). Define the cost over the infinite horizon as

C =
∞∑
n=0

αnc(Xn)

C is a random variable and hence let’s look at the expected total discounted
cost starting from state i ,

φ(i) = E
[
C |X0 = i

]
Theorem

Suppose c and φ represent column vectors of c(i)s and φ(i)s. For 0 ≤ α < 1,

φ = (I − αP)−1c

Lecture 9 Policy Iteration



3/31

Previously on Markov Decision Processes

We will mostly deal with countable state, control, and disturbance spaces.
In such cases, we can write the DP equations and the T operators in more
compact form.

Suppose the state space is X = {1, . . . , n}. The transitions no longer are
a function of k and hence we can write

pij(u) = P[xk+1 = j |xk = i , uk = u]∀ i , j ∈ X , u ∈ U(i)

The two T mappings take the form

(TJ)(i) = min
u∈U(i)

{
g(i , u) + α

n∑
j=1

pij(u)J(j)

}
∀ i ∈ X

(TµJ)(i) =

{
g(i , µ(i)) + α

n∑
j=1

pij(µ(i))J(j)

}
∀ i ∈ X

Note that it has been implicitly assumed that g does not depend on the

disturbance. How can we relax that?

Lecture 9 Policy Iteration



4/31

Previously on Markov Decision Processes

One can also write vector forms of these equations.

J =

J(1)
...

J(n)

 TJ =

(TJ)(1)
...

(TJ)(n)

 TµJ =

(TµJ)(1)
...

(TµJ)(n)


For a given policy µ, we can also write the one-step transition probability matrix
as

Pµ =

p11(µ(1)) . . . p1n(µ(1))
...

. . .
...

pn1(µ(n)) . . . pnn(µ(n))


and the cost vector for a fixed policy µ as

gµ =

g(1, µ(1))
...

g(n, µ(n))


Thus, the T-mu operator in matrix form can be written as

TµJ = gµ + αPµJ

Lecture 9 Policy Iteration



5/31

Previously on Markov Decision Processes

Proposition

1 For any bounded function J : X → R, J∗ = limk→∞ T kJ

2 (Bellman Equations) The optimal value functions satisfy J∗ = TJ∗

and J∗ is the unique solution of this equation.

3 For any bounded function J : X → R, Jµ = limk→∞ T k
µJ

4 The value functions associated with a stationary policy µ satisfy
Jµ = TµJµ and Jµ is the unique solution of this equation.

5 (Necessary and Sufficient Conditions for Optimality) A stationary
policy µ is optimal ⇔ it attains the minimum in the Bellman
equations, i.e.,

TJ∗ = TµJ
∗

Lecture 9 Policy Iteration



6/31

Previously on Markov Decision Processes

Lemma (Monotonicity Lemma)

For any J : X → R and J ′ : X → R such that J ≤ J ′ and a stationary policy µ,

1 T kJ ≤ T kJ ′

2 T k
µJ ≤ T k

µJ
′

Lemma (Constant Shift Lemma)

For every k, and J : X → R and stationary policy µ

1
(
T k(J + re)

)
(i) =

(
T kJ)

)
(i) + αk r

2
(
T k

µ(J + re)
)
(i) =

(
T k

µJ)
)
(i) + αk r

Lecture 9 Policy Iteration



7/31

Previously on Markov Decision Processes

Value Iteration

Fix a tolerance level ε > 0
Select J0 ∈ B(X ) and k ← 0
J1 ← TJ0
while ‖Jk+1 − Jk‖ > ε(1−α)

2α
do

k ← k + 1
Jk+1 ← TJk

end while

Select µε that satisfies TµεJk+1 = TJk+1

In other words, the policy constructed at termination can be written as

µε(i) ∈ arg min
u∈U(i)

E
{
g(i , u) + α

n∑
j=1

pij(u)Jk+1(j)

}

Lecture 9 Policy Iteration



8/31

Lecture Outline

1 Policy Iteration

2 Modified Policy Iteration

Lecture 9 Policy Iteration



9/31

Lecture Outline

Policy Iteration

Lecture 9 Policy Iteration



10/31

Policy Iteration
Introduction

The value iteration method is one way of finding the optimal values and
policies. It operates in the ‘value space’ by moving from one value function
to another using the T operator.

Another standard technique to solve MDPs is called Policy iteration, which
operates in the ‘policy space’. That is, we move from one policy to another.

A key difference between both the algorithms is that:

I Value iteration converges in the limit. In the example we saw
earlier, the policy may remain unchanged over multiple iterations.

I Policy iteration converges after a finite number of iterations since
the total number of policies are finite (for problems with finite
states and actions).

Lecture 9 Policy Iteration



11/31

Policy Iteration
PIP

Proposition (Policy Improvement Property (PIP))

Let µ and µ′ be stationary policies such that Tµ′Jµ = TJµ. Then,

Jµ′(i) ≤ Jµ(i)∀ i = 1, . . . , n

Furthermore, if µ is not optimal, strict inequality holds for at least one i .

Proof.

Recall that Jµ = TµJµ and by assumption Tµ′Jµ = TJµ. Thus for every i ,

Jµ(i) = g(i , µ(i)) + α

n∑
j=1

pij(µ(i))Jµ(i)

≥ g(i , µ′(i)) + α

n∑
j=1

pij(µ
′(i))Jµ(i)

= (Tµ′Jµ)(i)

Lecture 9 Policy Iteration



12/31

Policy Iteration
PIP

Proof.

Apply Tµ′ on both sides and use the monotonicity lemma.

Jµ ≥ Tµ′Jµ ≥ T 2
µ′Jµ ≥ . . . ≥ limk→∞T k

µ′Jµ = Jµ′

We’ll prove the second part using contraposition, i.e., if Jµ = Jµ′ , then
we need to show µ is optimal.

Since Jµ = Jµ′ , Jµ = Tµ′Jµ. Also by hypothesis, Tµ′Jµ = TJµ. Hence,
Jµ = TJµ. Therefore, Jµ satisfies the Bellman equations and
Jµ = J∗. �

Can you design a new algorithm using the PIP result?

Lecture 9 Policy Iteration



13/31

Policy Iteration
Algorithm

The main steps of policy iteration are:

I For a given policy µ, construct the cost function Jµ (How?)

I Update the policy to µ′ by finding the controls which minimize TJµ.

When do we stop?

Lecture 9 Policy Iteration



14/31

Policy Iteration
Pseudocode

Policy Iteration
Pick an initial policy µ0 (say a Greedy policy)
Set µ1 such that Tµ1Jµ0 = TJµ0 and k ← 0
while µk+1 6= µk do

k ← k + 1
Compute Jµk by solving Jµk = Tµk Jµk , i.e., . Policy Evaluation

Jµk = (I − αPµk )−1gµk

Compute a new policy µk+1 that satisfies . Policy Improvement

Tµk+1Jµk = TJµk

end while
µ∗ ← µk and J∗ ← Jµk

Since the termination criteria in the above algorithm compares policies between
consecutive iterations, breaking ties arbitrarily can slow convergence.

Hence, we set µk+1(i) = µk(i) whenever possible or stop when Jµk = TJµk

Lecture 9 Policy Iteration



15/31

Policy Iteration
Pseudocode

In the policy evaluation stage, we are solving Jµk
= Tµk

Jµk
, or equivalently

Jµk
= (I − αPµk

)−1gµk

We discussed earlier that this system has solutions because Tµ is a con-
traction mapping.

An alternate argument involving the eigenvalues of Pµk
can also be used

to show that the system admits a solution.

Recall that a square matrix is invertible iff it does not have a zero eigen-
value. Can an eigenvalue of I − αPµk

be zero?

Lecture 9 Policy Iteration



16/31

Policy Iteration
Example

Perform three iterations of the PI algorithm for the following example with
two states 1 and 2. Assume that the discount factor is 0.9.

1 2

I U(1) = {u1, u2}
I g(1, u1) = 2, g(1, u2) = 0.5

I p1j(u1) = [3/4 1/4]

I p1j(u2) = [1/4 3/4]

I U(2) = {u1, u2}
I g(2, u1) = 1, g(2, u2) = 3

I p2j(u1) = [3/4 1/4]

I p2j(u2) = [1/4 3/4]

Lecture 9 Policy Iteration



17/31

Policy Iteration
Example

Iteration 0: Suppose we start with an initial policy µ0, where µ0(1) = u1, and
µ0(2) = u2.

Policy Evaluation:

Pµ0 =

[
0.75 0.25
0.25 0.75

]
gµ0 =

[
2
3

]
Thus, using Jµ0 = (I − αPµ0)−1gµ0 ,

Jµ0 =

[
Jµ0(1)
Jµ0(2)

]
=

([
1 0
0 1

]
− 0.9

[
0.75 0.25
0.25 0.75

])−1 [
2
3

]
=

[
24.09
25.91

]

Lecture 9 Policy Iteration



18/31

Policy Iteration
Example

Policy Improvement:

(TJµ0)(1) = min

{
2 + 0.9(0.75 ∗ 24.09 + 0.25 ∗ 25.91),

0.5 + 0.9(0.25 ∗ 24.09 + 0.75 ∗ 25.91)

}
= min

{
24.09, 23.41

}
Hence, set µ1(1) = u2

(TJµ0)(2) = min

{
1 + 0.9(0.75 ∗ 24.09 + 0.25 ∗ 25.91),

3 + 0.9(0.25 ∗ 24.09 + 0.75 ∗ 25.91)

}
= min

{
23.09, 25.91

}
Hence, set µ1(2) = u1

Lecture 9 Policy Iteration



19/31

Policy Iteration
Example

Iteration 1: µ1(1) = u2, and µ1(2) = u1.

Policy Evaluation:

Pµ1 =

[
0.25 0.75
0.75 0.25

]
gµ1 =

[
0.5
1

]
Thus, using Jµ1 = (I − αPµ1)−1gµ1 ,

Jµ1 =

[
Jµ1(1)
Jµ1(2)

]
=

([
1 0
0 1

]
− 0.9

[
0.25 0.75
0.75 0.25

])−1 [
0.5
1

]
=

[
7.33
7.67

]

Lecture 9 Policy Iteration



20/31

Policy Iteration
Example

Policy Improvement:

(TJµ1)(1) = min

{
2 + 0.9(0.75 ∗ 7.33 + 0.25 ∗ 7.67),

0.5 + 0.9(0.25 ∗ 7.33 + 0.75 ∗ 7.67)

}
= min

{
8.67, 7.33

}
Hence, set µ2(1) = u2

(TJµ1)(2) = min

{
1 + 0.9(0.75 ∗ 7.33 + 0.25 ∗ 7.67),

3 + 0.9(0.25 ∗ 7.33 + 0.75 ∗ 7.67)

}
= min

{
7.67, 9.83

}
Hence, set µ2(2) = u1. Since µ1 = µ2, we have found the optimal policy and

value function.

Lecture 9 Policy Iteration



21/31

Policy Iteration
Geometric Interpretation

𝐽
𝐽0

𝐽0

𝑇𝐽0

𝑇𝐽0 𝑇2𝐽0

𝑇2𝐽0

𝐽∗ = 𝑇𝐽∗

𝐽∗ = 𝑇𝐽∗

Figure: Value Iteration

Lecture 9 Policy Iteration



22/31

Policy Iteration
Geometric Interpretation

For a given stationary policy
µ, TµJ = gµ +αPµJ is linear
in J

TJ is the piecewise linear
function minµ{gµ + αPµJ}

𝐽

𝑇𝐽

𝑇𝜇𝐽

𝑇ෝ𝜇𝐽

Figure: TJ is ‘Piecewise Concave’

Lecture 9 Policy Iteration



23/31

Policy Iteration
Geometric Interpretation

𝐽

𝑇𝐽

𝑇𝜇0𝐽𝜇0

𝐽𝜇0

𝜇0

Figure: Policy Evaluation

𝐽

𝑇𝐽

𝑇𝜇0𝐽𝜇0

𝐽𝜇0

𝜇1

𝜇0

Figure: Policy Improvement

Lecture 9 Policy Iteration



24/31

Policy Iteration
Geometric Interpretation

𝐽

𝑇𝐽

𝑇𝜇0𝐽𝜇0

𝐽𝜇0

𝜇1

𝐽𝜇1

𝑇𝜇1𝐽𝜇1

𝜇0

Figure: Policy Iteration

Lecture 9 Policy Iteration



25/31

Lecture Outline

Modified Policy Iteration

Lecture 9 Policy Iteration



26/31

Modified Policy Iteration
Introduction

Empirically, convergence of PI is much better than that of VI. In fact, it
exhibits a significant improvement within the first few iterations. (One can
still construct pathological instances which converge slowly.)

Under some assumptions on the one-step costs and probabilities, there are
theoretical results which show that the convergence is superlinear.

Given a policy µk , the policy evaulation step involves finding Jµk
by solving

the system of equations

(I − αPµk
)Jµk

= gµk

This step can be computationally expensive if we have a large number of

states. Is there an alternate method to estimate Jµk
?

Lecture 9 Policy Iteration



27/31

Modified Policy Iteration
Introduction

Recall that Jµ is not only a solution to Jµ = TµJµ but also equals
limk→∞ T k

µJ.

Thus, one can use a VI-like method to calculate Jµk
by repeatedly applying

Tµk
on some initial guess J. The exact values of Jµk

are of course obtained
only in the limit and when we stop after a finite number of iterations we
get an approximate Jµk

.

The modified policy iteration method uses a finite number of VI-type steps
instead of calculating the inverse of a large matrix. The policy improvement
step is then carried out and the process is repeated.

Empirically MPI does better than regular PI. This method is also called
Optimistic Policy Iteration.

Lecture 9 Policy Iteration



28/31

Modified Policy Iteration
Pseudocode

Let m0,m1, . . . be a sequence of positive integers.

Modified Policy Iteration
k ← 0
Pick an initial policy µ0 and estimate Jµ0 ≈ J0
Set µ1 such that Tµ1J0 = TJ0 and estimate Jµ1 ≈ J1
while ‖Jk+1 − Jk‖ > ε(1−α)

2α
do

k ← k + 1
Compute a new policy µk+1 that satisfies . Policy Improvement

Tµk+1Jk = TJk

Compute an approximate Jµk+1 by solving . Policy Evaluation

Jµk+1 ≈ Jk+1 = T
mk+1
µk+1 Jk

end while

Lecture 9 Policy Iteration



29/31

Modified Policy Iteration
Geometric Interpretation

𝐽𝐽

𝑇𝜇0𝐽

𝐽𝜇0 ≈ 𝐽0 = 𝑇2𝐽

𝑇𝜇0
2 𝐽

𝜇0

Policy Evaluation

𝜇1

𝑇𝜇0𝐽

Policy Improvement

𝑇𝜇1𝐽0

𝑇𝜇1𝐽0

𝑇𝜇1
2 𝐽0

Figure: Modified Policy Iteration

Lecture 9 Policy Iteration



30/31

Modified Policy Iteration
Convergence

Since VI-like steps are involved, we used the distance between successive
value function iterates to define convergence.

Therefore the sequence of value functions can be shown to converge in the
limit. It is also possible to show that µk is optimal for all k greater than
some index K .

What happens if

I mk = 1∀ k? MPI is same as VI

I mk =∞∀ k? MPI is same as PI

Lecture 9 Policy Iteration



31/31

Your Moment of Zen

Lecture 9 Policy Iteration


