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Previously on Markov Decision Processes

Theorem (DP Algorithm)

The optimal cost J∗(x0) equals J0(x0) which solves

JN(xN) = gN(xN)

Jk(xk) = min
uk∈Uk (xk )

Ewk

{
gk(xk , uk ,wk) + Jk+1(fk(xk , uk ,wk))

}
∀ k = N − 1, . . . , 1, 0

Further, if u∗k = µ∗k (xk) minimizes the RHS of the above expression then
π∗ = {µ∗0 , µ∗1 , . . . , µ∗N−1} is optimal.

For certain classes of problems, the optimal policies can be shown to satisfy
certain properties, called structural results. Unfortunately, there’s no unified
theory behind it and it is best understood from multiple examples.

The proof techniques in establishing these results almost always involves induc-

tion or recursion! In the following lecture(s), we will study few such problems.
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Previously on Markov Decision Processes

In such cases, we can write the state as (xk , yk) where xk is affected by uk and
yk is not. Let pi represent the pmf of yk . In such cases, the DP algorithm can
be simplified as

Ĵk(xk) =
m∑
i=1

piJk(xk , i)

Ĵk(xk) =
m∑
i=1

pi min
uk∈Uk (xk )

Ewk

{
gk(xk , uk ,wk) + Ĵk+1(fk(xk , uk ,wk))|yk = i

}
In the case of Tetris, xk is the board configuration and yk is the shape of the
block. There is no exogenous disturbance and the action uniquely determines
the new state. Hence, we can write

Jk(xk) =
m∑
i=1

pi min
uk∈Uk (xk )

{
gk(xk , i , uk) + Jk+1(fk(xk , i , uk))

}
fk represents the new board position and gk could be the number of rows cleared.
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Previously on Markov Decision Processes

For the inventory control problem,

Jk(xk) = −cxk + min
uk≥0

{
c(xk + uk) + Hk(xk + uk) + EJk+1(xk + uk − wk)

}
= −cxk + min

yx≥xk

{
cyk + Hk(yk) + EJk+1(yk − wk)

}
Let Gk(yk) = cyk + Hk(yk) + EJk+1(yk − wk). Jk(xk) can be written as

Jk(xk) = −cxk + min
yk≥xk

Gk(yk)

It turns out that Gk(.) is convex for all k! (We will show this shortly.)

Suppose the unconstrained minimum of Gk(yk) occurs at Sk . What can
we say about minyk≥xk Gk(yk)?

min
yk≥xk

Gk(yk) =

{
Gk(Sk) if xk ≤ Sk

Gk(xk) otherwise
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Previously on Markov Decision Processes

𝑆𝑘 𝑦𝑘

Thus, the optimal value function is

Jk(xk) =

{
−cxk + Gk(Sk) if xk ≤ Sk

Hk(xk) + EJk+1(xk − wk) otherwise

Note that now we’ve got rid of the min operator in the above expression.

The policy is constructed based on the control values at which the mini-
mum occurs. Recall that yk = xk +uk . Thus, when xk ≤ Sk , y∗k = Sk and
when xk > Sk , yk = xk ,

µ∗k(xk) =

{
Sk − xk if xk ≤ Sk

0 otherwise
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Previously on Markov Decision Processes

When there are fixed costs, Gk(.) is no longer
convex because of the structure of the above
equation. One can however identify two dis-
tinct regimes in the optimal value functions
because it is K -convex.

Let sk be the smallest yk for which Gk(y) =
K + Gk(Sk). 𝑆𝑘 𝑦𝑘

𝐾

𝑠𝑘

Case I: When xk ≤ sk ,

min

{
Gk(xk), min

yk>xk

{
K + Gk(yk)

}}
= min

yk>xk

{
K + Gk(yk)

}
= K + Gk(Sk)

Case II: When xk > sk ,

min

{
Gk(xk), min

yk>xk

{
K + Gk(yk)

}}
= Gk(xk)
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Previously on Markov Decision Processes

The optimal value functions can thus be written as

Jk(xk) =

{
−cxk + K + Gk(Sk) if xk ≤ sk

−cxk + Gk(xk) if xk > sk

Now, let’s look at the optimal policy. In Case I, minimum of the RHS
occurs when yk = Sk and hence uk = Sk − xk . In Case II, the minimum
occurs when uk = 0. Thus, we have

µ∗k(xk) =

{
Sk − xk if xk ≤ sk

0 if xk > sk

Such policies are also called (s,S) policies.
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Lecture Outline

1 Secretary Problem

2 Airline Revenue Management
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Lecture Outline

Secretary Problem
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Secretary Problem
Introduction

You are to choose a secretary from N potential candidates. The candidates
have a true ranking but it is not known to you unless you interview
everyone.

At any stage you can rank the candidates you have interviewed so far
(relative ranking).

After interviewing a candidate you can either give them the job (in which
case you do not interview more candidates) or continue interviewing (in
which case you cannot hire a previously interviewed candidate).

The objective is to maximize the probability of picking the top true-ranked
candidate. Formulate this as an MDP and solve it.
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Secretary Problem
Introduction

For instance, if N = 3, and the three candidates are I, II, and III, with true
ranking 1, 2, and 3 respectively.

II 1𝑘 = 0

III 2 1𝑘 = 1

III 2 1 3𝑘 = 2 III

We will let k ∈ {1, 2, . . . ,N} instead of starting from 0 since there are N

candidates and we need to make only N − 1 decisions.
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Secretary Problem
Observations

The MDP formulation is not very straightforward because of the objective.
But first, note that

I For the above objective, it is not optimal to select a candidate who
was just interviewed and whose relative rank is > 1. (Why?)

I So if we decide to stop, the recently interviewed candidate must
have a relative rank 1.

http://www.randomservices.org/random/apps/SecretaryGame.html

Let the state variable xk be 1 if the current candidate has a relative rank
1 and 0 otherwise.

Additionally, we need to account for the case in which the interview pro-
cesses is terminated at some intermediate step. Therefore, we assume that
xk can equal T, which represents a stopped state.
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Secretary Problem
MDP Formulation

Control:
Suppose in each time step, we can either stop (S) the interview process or
continue (C) to interview one more candidate. For all time periods except
the last,

Uk(xk) =

{
{S, C} if xk ∈ {0, 1}
∅ if xk = T

Although, it is not optimal to choose S when xk = 0, we will allow this
action and let the Bellman equations take care of optimality.

Disturbance:
We will define wk as a Bernoulli random variable that is 1 if the subsequent
candidate at time k + 1 has a relative rank 1 among the first k + 1 and is
0 otherwise. What is the pmf of wk?

P[wk = 0] = k/(k + 1)

P[wk = 1] = 1/(k + 1)
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Secretary Problem
MDP Formulation

Dynamics:

xk+1 = fk(xk , uk ,wk) =

{
wk if uk = C

T if uk = S or xk = T

Costs:
One-step costs are incurred only when we stop the interview process. They
need to be carefully designed so that

E

{
gN(xN) +

N−1∑
k=0

gk(xk , uk ,wk)

}
corresponds to the probability of selecting the best candidate. Hence, we
assume that costs are incurred exactly once when the interview ends.

I Terminal Costs:

gN(xN) =

{
1 if xN = 1

0 if xN ∈ {0,T}
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Secretary Problem
Bellman Equations

I One-step Costs:

gk(xk , uk ,wk) = gk(xk , uk) =

{
k/N if xk = 1 and uk = S

0 otherwise

Why k/N? The probability that the top true-ranked candidate is
the kth candidate that you’ve interviewed is

(
N−1
k−1
)
/
(
N
k

)
.

Since we wish to maximize the probability of selecting the best candidate,
the DP algorithm can be re-written as,

JN(xN) = gN(xN)

Jk(xk) = max
uk∈Uk (xk )

Ewk

{
gk(xk , uk ,wk) + Jk+1(fk(xk , uk ,wk))

}
∀ k = N − 1, . . . , 1
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Secretary Problem
Bellman Equations

When xk 6= T,

Jk(1) = max
uk∈{S,C}

Ewk

{
gk(1, uk) + Jk+1(fk(1, uk ,wk))

}
= max

{
k

N
+ Jk+1(T ),

k

k + 1
Jk+1(0) +

1

k + 1
Jk+1(1)

}

Jk(0) = max
uk∈{S,C}

Ewk

{
gk(0, uk) + Jk+1(fk(0, uk ,wk))

}
= max

{
0 + Jk+1(T ),

k

k + 1
Jk+1(0) +

1

k + 1
Jk+1(1)

}
=

k

k + 1
Jk+1(0) +

1

k + 1
Jk+1(1)

Thus, Jk(1) can also be written as

Jk(1) = max

{
k

N
, Jk(0)

}
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Secretary Problem
Bellman Equations

The Bellman equations are not very difficult to solve since there are only
a handful of state-control pairs.

However, there are a neat structural result that can be uncovered using an
inductive argument.

Proposition

The optimal policy is reject the first η candidates and then select the first
top relative-ranked candidate.

In order to show this, we will prove a related proposition. The exact value
of η is a function of N. Also, let N ≥ 3 so that the trivial cases can be
ignored.

What is the value of η when N = 3?
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Secretary Problem
Bellman Equations

Proposition

If it is optimal to choose C at some time j, then it is optimal to choose C for
all previous time periods.

Proof.

Since it is optimal to choose C at j ,

Jj(1) = max

{
j

N
, Jj(0)

}
= Jj(0)

Thus, either Jj(0) = Jj(1) > j/N or Jj(0) = Jj(1) = j/N. Using the Bellman
equation, for time step j − 1,

Jj−1(0) =
j − 1

j
Jj(0) +

1

j
Jj(1) = Jj(0) ≥ j

N
>

j − 1

N

Jj−1(1) = max

{
j − 1

N
, Jj−1(0)

}
= Jj−1(0) >

j − 1

N

Thus, it is optimal to choose C at time j − 1. Going backwards, recursively, we
can conclude that C is optimal for all i < j . �
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Secretary Problem
Optimal Value Functions

Therefore, we will never have a policy that looks like

k 1 . . . k ′ . . . k ′′ . . .
xk 1 . . . 1 . . . 1 . . .

µ∗k(xk) C . . . S . . . C . . .

Note that the above policy is still admissible even though it prescribes to
choose S since the policy does not keep track of history of actions. It just
tells what to do at different states.

The optimal action when xk is 0 is always C and hence has been omitted
from the above table.

In other words, if it is optimal to choose S at some stage k ′, for all future

periods when the state is 1, the optimal action must be S.
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Secretary Problem
Optimal Value Functions

We can analytically solve the optimal value functions. Suppose, we reject
the first η candidates and select the first relative-ranked candidate,

Case I: k ≤ η
Jk(1) = Jk(0)

Further, when k < j , Jk(1) = Jk+1(1). (Why?) Use the expression for
value function of Jk(0). Hence,

J1(0) = J1(1) = . . . = Jη(0) = Jη(1)
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Secretary Problem
Optimal Value Functions

Case II: k > η

Jk(1) =
k

N

To compute Jk(0), we use backward induction. For k = N, JN(0) = 0; JN(0) =
1. For k = N − 1,

JN−1(0) =
N − 1

N
JN(0) +

1

N
JN(1)

=
1

N
=

N − 1

N

1

N − 1

For k = N − 2,

JN−2(0) =
N − 2

N − 1
JN−1(0) +

1

N − 1
JN−1(1)

=
N − 2

N − 1

1

N
+

1

N
=

N − 2

N

{
1

N − 1
+

1

N − 2

}
For k > η,

Jk(0) =
k

N

{
1

N − 1
+

1

N − 2
+ . . .+

1

k

}
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Secretary Problem
Optimal Value Functions

We now know the analytical expressions for Jk(0) and Jk(1) for all k.
Recall that

Jk(1) = max

{
k

N
, Jk(0)

}
Since we stop when the state is 1 after rejecting η candidates, when k =
η + 1,

Jη+1(1) =
η + 1

N
≥ Jη+1(0)

Since, η + 1 > η, using the results from Case II,

Jη+1(0) =
η + 1

N

{
1

N − 1
+

1

N − 2
+ . . .+

1

η + 1

}
Substituting this in the above inequality,

η + 1

N
≥ η + 1

N

{
1

N − 1
+

1

N − 2
+ . . .+

1

η + 1

}
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Secretary Problem
Optimal Value Functions

Thus, the number of candidates to reject before selecting the candidate
with relative rank 1 is the smallest integer for which

1

N − 1
+

1

N − 2
+ . . .+

1

η + 1
≤ 1

What is the value of η for N = 5? What if N →∞? We can approximate
the above inequality as

1

N
+

1

N − 1
+

1

N − 2
+. . .+

1

η + 1
≈ 1

which can be written as∫ N

η

1

x
≈ 1⇒ ln(N/η) ≈ 1

⇒ η/N ≈ e−1 = 0.3679 𝑥

1/𝑥

𝜂 𝜂 + 1 𝑁𝑁 − 1

Thus, when N is large, it is optimal to reject 36.79% of the candidates

and then select the top relative-ranked one!
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Secretary Problem
Historical Notes

The Secretary Problem is nearly 150 years old. A variant of it was first
posed by Arthur Cayley in 1875!

The objective of maximizing the probability of a certain event is very com-
mon to several other MDPs, especially those that involve game playing.

The model we saw is also an example of what is called as an optimal
stopping problem in which the problem ends after a certain action is
chosen and the goal is to determine when to stop.

Additional Reading:

Ferguson, T. S. (1989). Who solved the secretary problem?. Statistical

science, 4(3), 282-289.
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Lecture Outline

Airline Revenue Management
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Airline Revenue Management
Introduction

We will now explore structural results for a simple revenue management
problem with a name-your-own-price (NYOP) feature (e.g., Priceline).

Consider a single BLR-DEL flight with a seat capacity C. Suppose

I There are n fare classes with prices p1, p2, . . . , pn such that
p1 ≥ p2 ≥ . . . ≥ pn.

I The time period of interest is divided as 0, 1, . . . ,N − 1,N, where N
is the time at which the flight takes off.

I At each time-step, at most one customer arrives and makes an offer
from the above denominations to purchase one seat.

I No overbooking is allowed.

The airlines must decide whether to accept the offer or not and has an
objective of maximizing expected revenue.
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Airline Revenue Management
Introduction

The different price classes can also reflect options like refundable/non-
refundable/partially-refundable segments in a non-NYOP model.

Similar models can be used for markets in which purchases are to be made
before a deadline such as hotels.

The probability with which a customer makes an offer pj is assumed to be
known qj . These are estimated from historic data and are called booking
curves.

It is not necessary that a customer arrives in a particular time period.

Hence, we assume that
∑n

j=1 qj ≤ 1.
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Airline Revenue Management
Introduction

Airlines can reserve a certain number of seats for different classes of passengers.
These are called protection levels.

They can also calculate booking limits, which is the number of tickets that the
airlines is willing to sell for various classes of customers.

Say an Airbus A320 has 180 seats. Suppose there are 4 classes with p1 ≥ p2 ≥
p3 ≥ p4. Then, a sample protection levels and booking limits could be

Class Protection Level Booking Limit

1 40 180
2 60 140
3 60 80
4 - 20

Protection levels are sometimes defined by including the reserved capacity of
higher classes. For e.g., the protection level for Class 2 is 100. (We’ll use this
version.)

One could use these types of measures to determine whether to accept or reject

offers. What are the disadvantages?
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Airline Revenue Management
MDP Formulation

State:
Let (xk , yk) represent the remaining capacity and the offer price made by
a customer at time k . If no customer arrives at time k, yk = 0.

Note that the state has an uncontrollable component like Tetris. The
control chosen does not affect yk .

Control:
Let the decline and accept actions be denoted using the variables 0 and 1.

Uk(xk) =

{
{0, 1} if xk > 0

0 if xk = 0

Disturbance:
wk is the offer price made by a customer in the next time period.

P[wk = pj ] = qj ∀ j = 1, . . . , n

P[wk = 0] = 1−
n∑

j=1

qj
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Airline Revenue Management
MDP Formulation

Dynamics:
(xk+1, yk+1) = fk(xk , uk ,wk) = (xk − uk ,wk)

Rewards:
Terminal rewards are zero since the seats have no value when the flight
takes off. For all other time periods,

gk((xk , yk), uk ,wk) = ykuk

The Bellman equations can be written as

JN((xN , yN)) = 0∀ xN , yN
Jk((xk , yk)) = 0∀ xk = 0, k ∈ {0, 1, . . . ,N − 1}

Jk((xk , yk)) = max
uk∈{0,1}

{
ykuk + EJk+1((xk − uk ,wk))

}
∀ xk > 0, k ∈ {0, 1, . . . ,N − 1}

Why does the one-step reward not have an expectation?
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Airline Revenue Management
Optimality Conditions

Since, a part of the state is uncontrollable, we can define an ex ante value
function

Ĵk(xk) =
n+1∑
j=1

qjJk((xk , j))

where j = n+1 is used to represent the no customer situation. Also define
the expected marginal value of one additional seat,

∆Ĵk(x) = Ĵk(x)− Ĵk(x − 1)

In other words, it is the expected benefit from not selling a seat/having an
extra seat when we have x unsold seats at time step k .

When xk > 0, we can thus rewrite the Bellman equations as

Ĵk(xk) =
n+1∑
j=1

qj max
uk∈{0,1}

{
pjuk + Ĵk+1(xk − uk)

}

=
n+1∑
j=1

qj max
uk∈{0,1}

{
pjuk + Ĵk+1(xk)− Ĵk+1(xk) + Ĵk+1(xk − uk)

}
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Airline Revenue Management
Optimality Conditions

= Ĵk+1(xk) +
n+1∑
j=1

qjk max
uk∈{0,1}

{
pjuk − Ĵk+1(xk) + Ĵk+1(xk − uk)

}

= Ĵk+1(xk) +
n+1∑
j=1

qjk max
uk∈{0,1}

{(
pj −∆Ĵk+1(xk)

)
uk

}
Thus, if a customer offers a price pj , then it is optimal to accept iff

pj ≥ ∆Ĵk+1(xk)

That is, if the price offered is greater than the expected reward from saving

the seat, the airlines must accept the offer.
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Airline Revenue Management
Structural Results

It turns out that ∆Ĵk(x) has a few interesting properties.

Proposition

The value functions ∆Ĵk(x) satisfy

1 ∆Ĵk(x + 1) ≤ ∆Ĵk(x)

2 ∆Ĵk+1(x) ≤ ∆Ĵk(x)

The first condition implies that the marginal value of one extra seat decreases,
i.e., they must be more valuable as they get scarce.

The second condition implies that the marginal value of an extra seat at x seats
decreases with time, i.e., a seat is more worthy if there is more time to sell it.

It can also be shown that Ĵk(x) is concave in x for all k! (in a discrete sense)
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Airline Revenue Management
Structural Results

Hence, we can derive time-
dependent protection levels λjk
(seat-capacity protected for classes
j , j − 1, . . . , 1) using

λjk = max

{
x
∣∣∣ pj < ∆Ĵk+1(x)

}

𝑝1

𝑝2

𝑝3

𝑥𝑘

Δ
መ 𝐽 𝑘
+
1
𝑥
𝑘

𝜆1𝑘 𝜆2𝑘 𝜆3𝑘

Accept only Class 1

Accept only Class 1 and Class 2

𝑝4

Likewise, booking-limits (number of tickets the airlines is willing to sell to
class j customers) can be derived using

βjk = C − λj−1,k
Since p1 ≥ p2 ≥ . . . pN−1, the protection levels and booking limits are

nested. These results are clearly more insightful than plain look-up tables.
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Airline Revenue Management
Structural Results

Additional Reading:
Subramanian, J., Stidham Jr, S., & Lautenbacher, C. J. (1999). Airline
yield management with overbooking, cancellations, and no-shows. Trans-
portation science, 33(2), 147-167.
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Your Moment of Zen
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