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Previously on Markov Decision Processes

Suppose there are N time steps k = 0, 1, 2, . . . ,N − 1. For each k, define

Notation Description

xk State of the system at time k
uk Action/control/decision variable to be chosen at k
wk Disturbance, a random variable with known distribution
fk(xk , uk ,wk) System dynamics

The distribution of wk may depend on xk and uk and is usually independent
across time.

Additionally, we incur a one-step cost of gk(xk , uk ,wk) due to taking an action
in a particular state. We also assume that the final state xN results in a terminal
cost of gN(xN).

The total cost is

gN(xN)+
N−1∑
k=0

gk(xk , uk ,wk) 𝑥𝑘 𝑥𝑘+1

𝑢𝑘

𝑔𝑘(𝑥𝑘, 𝑢𝑘, 𝑤𝑘)

𝑢𝑘+1

Period 𝑘 Period 𝑘 + 1

𝑥𝑘+2

𝑢𝑘+2

𝑔𝑘+1(𝑥𝑘+1, 𝑢𝑘+1, 𝑤𝑘+1)

Period 𝑘 + 2

𝑤𝑘 𝑤𝑘+1
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Previously on Markov Decision Processes

The above cost is a random variable because w0, . . . ,wN−1 are random variables.
Hence, we are typically interested in minimizing the expected total cost

E

{
gN(xN) +

N−1∑
k=0

gk(xk , uk ,wk)

}
Denote the set of all states at time k using Sk .Let Uk(xk) be the set of actions
available at time step k and at state xk . We say that a policy π is admissible if
µk(xk) ∈ Uk(xk) ∀ xk ∈ Sk . Let Π be the set of all admissible policies.

Think of π as the decision variable and Π as the feasible region. The objective
for a given π is

Jπ(x0) = E

{
gN(xN) +

N−1∑
k=0

gk(xk , µk(xk),wk)

}
where expected is taken over w and states evolve according to xk+1 = fk(xk , uk ,wk).
The goal is to find π∗ that minimizes the above cost.

J∗(x0) = Jπ∗(x0) = min
π∈Π

Jπ(x0)

J∗(x0) and is called the optimal value or cost function. Note that it is a

function of the initial state just like DTMC with costs.
Lecture 5 Applications of Finite Horizon MDPs - Part I



4/38

Previously on Markov Decision Processes
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Previously on Markov Decision Processes

Proposition (Principle of Optimality)

Let π∗ = {µ∗0 , µ∗1 , . . . , µ∗N−1} be an optimal policy. Consider the subproblem in
which we are at xi and seek the minimum cost-to-go from i to N.

E

{
gN(xN) +

N−1∑
k=i

gk(xk , µk(xk),wk)

}

The truncated policy {µ∗i , µ∗i+1, . . . , µ
∗
N−1} is optimal for this subproblem.

Theorem (DP Algorithm)

The optimal cost J∗(x0) equals J0(x0) which solves

JN(xN) = gN(xN)

Jk(xk) = min
uk∈Uk (xk )

Ewk

{
gk(xk , uk ,wk) + Jk+1(fk(xk , uk ,wk))

}
∀ k = N − 1, . . . , 1, 0

Further, if u∗k = µ∗k (xk) minimizes the RHS of the above expression then
π∗ = {µ∗0 , µ∗1 , . . . , µ∗N−1} is optimal.

Lecture 5 Applications of Finite Horizon MDPs - Part I



6/38

Lecture Outline

1 DP Example

2 Inventory Control without Fixed Costs

3 Inventory Control with Fixed Costs
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Lecture Outline

DP Example
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DP Example
Problem Statement

Imagine an instance in which back orders are disallowed. Hence, the dy-
namics can be expressed as

xk+1 = f (xk , uk ,wk) = [xk + uk − wk ]+

Let wk represent the demand and assume that it can either be 1 or 2 with
equal probability.

Assume that the cost of ordering one unit of the item is 1 and penalty for
holding and falling short is (xk + uk − wk)2. Thus, the one-step costs are

gk(xk , uk ,wk) = uk + (xk + uk − wk)2

Additionally, suppose that only a maximum of 2 items can be stored.

Assuming, N = 2 and gN(xN) = 0 for all xN find the optimum value

functions and policies.
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DP Example
Backward Induction

Table: Terminal Value Functions

x2 J∗2 (x2)
0 0
1 0
2 0

For k = 1 and 0 solve,

Jk(xk) = min
uk≤2−xk

E
{
uk + (xk + uk − wk)2 + Jk+1

(
[xk + uk − wk ]+

)}
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DP Example
Backward Induction

For k = 1, the value functions can be written as

J1(0) = min
u1∈{0,1,2}

E
{
u1 + (u1 − w1)2 + J2

(
[u1 − w1]+)} = min

{
5/2, 3/2, 5/2

}

J1(1) = min
u1∈{0,1}

E
{
u1 + (1 + u1 − w1)2 + J2

(
[1 + u1 − w1]+)} = min

{
1/2, 3/2

}

J1(2) = min
u1∈{0}

E
{
u1 + (2 + u1 − w1)2 + J2

(
[2 + u1 − w1]+)} = 1/2

Table: Optimal value function and policy for k = 1

x1 J∗1 (x1) µ∗1 (x1)

0 3/2 1
1 1/2 0
2 1/2 0
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DP Example
Backward Induction

For k = 0, the value functions can be written as

J0(0) = min
u0∈{0,1,2}

E
{
u0 + (u0 − w0)2 + J1

(
[u0 − w0]+)} = min

{
4, 3, 7/2

}

J0(1) = min
u0∈{0,1}

E
{
u0 + (1 + u0 − w0)2 + J1

(
[1 + u0 − w0]+)} = min

{
2, 2
}

J0(2) = min
u0∈{0}

E
{
u0 + (2 + u0 − w0)2 + J1

(
[2 + u0 − w0]+)} = 3/2

Table: Optimal value functions and policy for k = 0

x0 J∗0 (x0) µ∗0 (x0)

0 3 1
1 2 0 or 1
2 3/2 0
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DP Example
Interpreting Results

The solutions obtained can be used as ‘look-up’ tables. For instance, if we
were told that x0 = 2, we do not order anything in period 0.

Further, if there was a demand of 2 units in period 0, at k = 1, the new

future state is 0. Hence, we order 1 unit in period 1.
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DP Example
Observations

The DP algorithm is the only decent approach to solve finite horizon prob-
lems. However, as you might have noticed, it can become very clumsy
very quickly and

I A solution in the form of multiple look-up tables is not very
insightful.

I Continuous and countably infinite state spaces cannot be handled
without discretization and some approximation.

I It is intractable for large problem instances. This feature is also
called the curse of dimensionality.

Lecture 5 Applications of Finite Horizon MDPs - Part I



14/38

DP Example
Observations

However, for certain classes of problems, the optimal policies can be shown
to satisfy certain properties. This shrinks the search space and can tackle
the above three issues.

These type of properties are also called structural results. Unfortunately,
there’s no unified theory behind it and it is best understood from multiple
examples.

But the proof techniques in establishing these results almost always involves
induction or recursion! In the following lecture(s), we will study few such
problems.
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Lecture Outline

Inventory Control without Fixed Costs
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Inventory Control without Fixed Costs
Introduction

Consider the inventory model introduced in the last class. xk and uk denote
the inventory at the beginning of period k and order quantity in k.

Assume that the demands are bounded random variables wk , with some
known probability distributions, and are independent across time. The
state/demand/control can be continuous or countably infinite.

Suppose back orders are allowed. Hence,

xk+1 = fk(xk , uk ,wk) = xk + uk − wk

As before assume that unit cost of procuring is c but the holding/shortage
costs in period k are given by

r(xk + uk − wk) = p max(0,−xk − uk + wk) + hmax(0, xk + uk − wk)

Lecture 5 Applications of Finite Horizon MDPs - Part I
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Inventory Control without Fixed Costs
Introduction

r(xk + uk − wk) = p max(0,−xk − uk + wk) + hmax(0, xk + uk − wk)

𝑧𝑧

𝑟𝑟(𝑧𝑧)

ℎ

𝑝𝑝

Shortage costs Holding costs

In fact, for the discussion that follows, r can be any convex function that

grows larger as its arguments tend to ±∞.

Lecture 5 Applications of Finite Horizon MDPs - Part I



18/38

Inventory Control without Fixed Costs
Optimality Conditions

The Bellman equations can be written as

JN(xN) = 0

Jk(xk) = min
uk≥0

E
{
gk(xk , uk ,wk) + Jk+1(fk(xk , uk ,wk))

}
= min

uk≥0
E
{
cuk + r(xk + uk − wk) + Jk+1(xk + uk − wk)

}
= min

uk≥0

{
cuk + Er(xk + uk − wk) + EJk+1(xk + uk − wk)

}
= min

uk≥0

{
cuk + Hk(xk + uk) + EJk+1(xk + uk − wk)

}
where Hk(xk + uk) = Er(xk + uk − wk). The function to be minimized in

the above equation depends on xk . Let yk = xk + uk . The trick here is

move xk from the objective to the constraints.
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Inventory Control without Fixed Costs
Optimality Conditions

Jk(xk) = −cxk + min
uk≥0

{
c(xk + uk) + Hk(xk + uk) + EJk+1(xk + uk − wk)

}
= −cxk + min

yx≥xk

{
cyk + Hk(yk) + EJk+1(yk − wk)

}
Let Gk(yk) = cyk + Hk(yk) + EJk+1(yk − wk). Jk(xk) can be written as

Jk(xk) = −cxk + min
yk≥xk

Gk(yk)

It turns out that Gk(.) is convex for all k! (We will show this shortly.)

Definition (Convex Function)

A function f : X ⊆ Rn → R is convex if ∀ x , y ∈ X , λ ∈ [0, 1],

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)

Suppose the unconstrained minimum of Gk(yk) occurs at Sk . What can we say
about minyk≥xk Gk(yk)?

min
yk≥xk

Gk(yk) =

{
Gk(Sk) if xk ≤ Sk

Gk(xk) otherwise
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Inventory Control without Fixed Costs
Optimal Solution

𝑆𝑘 𝑦𝑘

Thus, the optimal value function is

Jk(xk) =

{
−cxk + Gk(Sk) if xk ≤ Sk

Hk(xk) + EJk+1(xk − wk) otherwise

Note that now we’ve got rid of the min operator in the above expression.

The policy is constructed based on the control values at which the mini-
mum occurs. Recall that yk = xk +uk . Thus, when xk ≤ Sk , y∗

k = Sk and
when xk > Sk , yk = xk ,

µ∗
k(xk) =

{
Sk − xk if xk ≤ Sk

0 otherwise

Lecture 5 Applications of Finite Horizon MDPs - Part I
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Inventory Control without Fixed Costs
Convexity Proof

We’ve assumed that unconstrained Gk(.) has a minimum. This may not
always be true for any convex function. Why?

I In such cases, we can replace the min operator with inf. In fact,
when dealing with open domains, we will have to do something
similar in the DP algorithm as well.

I Alternately, we can prove that Gk(y)→∞ as |y | → ∞. We will
ignore these details, but they are not difficult to take care of.

Let’s now show that Gk(.) is convex for all k using recursion.

Proposition

Let g(y) = Ef (X , y). If f is convex in y for all realizations of X and
−∞ < Ef (X , y) <∞ for all y , g(y) is convex.
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Inventory Control without Fixed Costs
Optimality Conditions

Recall that Hk(yk) = Er(yk −wk). The assumed r function is convex, and hence
Hk is convex.

Theorem

The functions Gk(.) and Jk(.) are convex.

Proof.

Since JN(xN) = 0, it is convex. From the definition of Gk(.),

GN−1(y) = cy + HN−1(y) + EJN(y − w)

The RHS is a sum of convex functions, hence GN−1(.) is convex. Now consider,

JN−1(xN−1) =

{
−cxN−1 + GN−1(SN−1) if xN−1 ≤ SN−1

HN−1(xN−1) + EJN(xN−1 − wN−1) otherwise

Since GN−1(.) is convex, JN−1(.) is convex. We can proceed backwards in a
similar fashion to show that the theorem is true for all k. �
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Inventory Control without Fixed Costs
Advantages

How do these structural results help?

I First, instead of finding the optimal policy functions µk(.) for every
k, our problem reduces to searching for scalars S0,S1, . . . ,SN−1

much like open-loop optimization.

I Second, we no longer need elaborate look-up tables! They are also
very easy to convey to a decision maker.

The type of policies we obtained are also called threshold policies or

control limit policies.
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Lecture Outline

Inventory Control with Fixed Costs
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Inventory Control with Fixed Costs
Introduction

Ordering new stock often involves fixed costs (for e.g., because of trans-
portation). This can be modeled by assuming that the cost of ordering u
units is C (u) given by

C (u) =

{
K + cu if u > 0

0 otherwise
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Inventory Control with Fixed Costs
Introduction

The Bellman equations in this case can be written as

JN(xN) = 0

Jk(xk) = min
uk≥0

E
{
gk(xk , uk ,wk) + Jk+1(fk(xk , uk ,wk))

}
= min

uk≥0
E
{
C (uk) + r(xk + uk − wk) + Jk+1(xk + uk − wk)

}
= min

uk≥0

{
C (uk) + Er(xk + uk − wk) + EJk+1(xk + uk − wk)

}
= min

uk≥0

{
C (uk) + Hk(xk + uk) + EJk+1(xk + uk − wk)

}
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Inventory Control with Fixed Costs
Optimality Conditions

As before, assume yk = xk + uk , and

Gk(yk) = cyk + Hk(yk) + EJk+1(yk − wk)

The value functions can be rewritten as

Jk(xk) = min

{
Hk(xk) + EJk+1(xk − wk),

min
uk>0

{
K + cuk + Hk(xk + uk) + EJk+1(xk + uk − wk)

}}

Jk(xk) = −cxk + min

{
cxk + Hk(xk) + EJk+1(xk − wk),

min
uk>0

{
K + c(xk + uk) + Hk(xk + uk) + EJk+1(xk + uk − wk)

}}
Again, we use yk to move xk from the objective to the constraints,

Jk(xk) = −cxk + min

{
Gk(xk), min

yk>xk

{
K + Gk(yk)

}}
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Inventory Control with Fixed Costs
Optimality Conditions

Unfortunately, Gk(.) is no longer convex
because of the structure of the above
equation. One can however identify two
distinct regimes in the optimal value
functions.

Let sk be the smallest yk for which
Gk(y) = K + Gk(Sk). 𝑆𝑘 𝑦𝑘

𝐾

𝑠𝑘

Case I: When xk ≤ sk ,

min

{
Gk(xk), min

yk>xk

{
K + Gk(yk)

}}
= min

yk>xk

{
K + Gk(yk)

}
= K + Gk(Sk)

Case II: When xk > sk ,

min

{
Gk(xk), min

yk>xk

{
K + Gk(yk)

}}
= Gk(xk)
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Inventory Control with Fixed Costs
Optimality Conditions

The optimal value functions can thus be written as

Jk(xk) =

{
−cxk + K + Gk(Sk) if xk ≤ sk

−cxk + Gk(xk) if xk > sk

Now, let’s look at the optimal policy. In Case I, minimum of the RHS
occurs when yk = Sk and hence uk = Sk − xk . In Case II, the minimum
occurs when uk = 0. Thus, we have

µ∗
k(xk) =

{
Sk − xk if xk ≤ sk

0 if xk > sk

Such policies are also called (s,S) policies.
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Inventory Control with Fixed Costs
Optimality Conditions

What happens to Case II, when xk moves to the right?

𝑆𝑘 𝑦𝑘

𝐾

𝑠𝑘

𝐾
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Inventory Control with Fixed Costs
K-Convexity

What if Gk(.) looks like this?

𝑆𝑘 𝑦𝑘

𝐾

𝑠𝑘

𝐾

Case I can be left untouched, but Case II needs to be updated with more
regimes.

Luckily, it turns out that Gk(.) can never look like this!
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Inventory Control with Fixed Costs
K-Convexity

Using a recursive argument as before, it can be shown that the functions Gk(.)
are K -convex.

Definition (K -Convexity)

A function f : X ⊆ Rn → R is K -convex if ∀ x , y ∈ X , λ ∈ [0, 1],

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)(f (y) + K)

In other words, the secant between (x , f (x)) and (y , f (y) + K) must lie above
the function between [x , y ].

𝐾

𝑦, 𝑓 𝑦 + 𝐾

𝑥, 𝑓 𝑥

𝑦, 𝑓 𝑦 + 𝐾

𝑥, 𝑓 𝑥

𝐾
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Inventory Control with Fixed Costs
K-Convexity

A key consequence of K -convexity is
shown below. It proves the optimality
of the (s,S) policy. (How?)

𝑔 𝑧 + 𝐾

𝐾

𝑆𝑠

𝐾

𝑧

Proposition

If g is continuous K-convex function and g(y)→∞ as |y | → ∞, then there
exists scalars s and S with s ≤ S and

1 g(S) ≤ g(y) for all scalars y

2 g(S) + K = g(s) < g(y), for all y < s

3 g(y) is a decreasing function on (−∞, s)

4 g(y) ≤ g(z) + K for all y , z with s ≤ y ≤ z
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Inventory Control with Fixed Costs
K-Convexity

If the Gk(.) functions are K -convex, we have concluded that (s,S) policy
is optimal.

To formally show that the Gk(.) functions are K -convex, we once again
start with N, use the fact that JN(.) is convex and K - convex, and proceed
backwards to show that Jk(.) and Gk(.) are K -convex for all k = N−1,N−
2, . . . , 0.

These structural results help reduce the problem to finding two optimal

scalars for every time step instead of optimal functions.
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Inventory Control with Fixed Costs
Historical Notes

Inventory control was one of the earliest applications of MDP. The results
we saw today are due to Herbert Scarf.

I Scarf, Herbert (1959). The Optimality of (S, s) Policies for the Dynamic
Inventory Proble. Technical Report No. 11 (NR-047-019). Prepared for
Office of Naval Research.

I Arrow, K. J., Harris, T., & Marschak, J. (1951). Optimal inventory
policy. Econometrica: Journal of the Econometric Society, 250-272.
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Inventory Control with Fixed Costs
Historical Notes

In fact, Markov (1856-1922) had no role to play in the development of
MDPs! Richard Bellman is credited for the developed dynamic program-
ming during his time at RAND.

I Bellman, R. (1957). A Markovian decision process. Journal of
Mathematics and Mechanics, 679-684.

Lecture 5 Applications of Finite Horizon MDPs - Part I



37/38

Inventory Control with Fixed Costs
Historical Notes

However, the core ideas were already in use in many fields. For instance,
Pierre Masse, a French engineer had developed similar mathematical mod-
els for water resource management and Lloyd Shapley had some ideas in
his seminal paper on Stochastic Games.

I Massé, P. (1944). Application des probabilités en chaâne á l’hydrologie
statistique et au jeu des réservoirs. Journal de la société francaise de
statistique, 85, 204-219.

I Shapley, L. S. (1953). Stochastic games. Proceedings of the national
academy of sciences, 39(10), 1095-1100.

Ronald Howard also made fundamental contributions (especially on pol-
icy iteration methods) in his famous book “Dynamic Programming and
Markov Processes” independently around the same time as Bellman.

I Howard, R. A. (2002). Comments on the origin and application of
Markov decision processes. Operations Research, 50(1), 100-102.
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Your Moment of Zen
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