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Previously on Markov Decision Processes

Let {Xn, n ≥ 0} be a DTMC on S = Z+ with transition matrix P and
initial distribution a. For a given n, the marginal distribution of Xn is

a
(n)
j = P

[
Xn = j

]
∀ j ∈ S

=
∑
i∈S

P
[
Xn = j |X0 = i

]
P
[
X0 = i

]
(Law of Total Probability)

=
∑
i∈S

aip
(n)
ij

where p
(n)
ij is the probability of going from i to j in exactly n steps. Define

the n-step transition matrix P(n) as

P(n) =
[
p
(n)
ij

]
|S|×|S|

Hence, to compute the marginal distributions, we need to compute the

n-step transition matrices.
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Previously on Markov Decision Processes

We might sometimes be interested in the expected amount of time spent
by the system in different states up to time n (e.g., parking).

Such metrics are called occupancy times. Let V
(n)
j be the number of visits

to j over {0, 1, . . . , n}. Mathematically, occupancy time of j up to time n
starting from i is

m
(n)
ij = E

[
V

(n)
j |X0 = i

]
, ∀ i , j ∈ S , n ≥ 0

The matrix of m
(n)
ij values, also called the occupancy time matrix, is rep-

resented by

M(n) =
[
m

(n)
ij

]
|S|×|S|

The occupancy times matrix can be computed from the transition matrix!
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Previously on Markov Decision Processes

Intuitively, to go from i to j in n steps, we need to transition from i to some
state r in k steps and from r to j in remaining (n − k) steps.

Theorem (Chapman-Kolmogorov Equations)

The n-step transition probabilities satisfy

p
(n)
ij =

∑
r∈S

p
(k)
ir p

(n−k)
rj , ∀ i , j ∈ S , 0 ≤ k ≤ n

Applying the CK equations recursively, P(n) = Pn

Theorem

Let P0 = I . For a fixed n, M(n) =
n∑

r=0

P r
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Previously on Markov Decision Processes

To study this new classification, let’s first define a random variable called
the passage time

T̃i = min{n > 0 : Xn = i}
It represents the time step when the process visits i for the first time
(ignoring the initial state). What is the support of T̃i?

Given a random variable, we are typically interested in its pmf and expected
value. In the context of DTMCs, the following functions are of interest.

1 Probability that the return time is finite

ũi = P
[
T̃i <∞|X0 = i

]
2 Expected return time

m̃i = E
[
T̃i |X0 = i

]
Interpretation

ũi can also be viewed as the probability with which i is revisited and m̃i is
the expected time between consecutive visits.
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Previously on Markov Decision Processes

I Accessibility (i → j)
I Communicating (i ↔ j)
I Communicating Class (All states communicate and the set is maximal)
I Closed Communicating Class (‘Blackhole’)
I Irreducibility (The entire DTMC is a ‘blackhole’)

Null RecurrentPositive Recurrent

Transient Recurrent

State 𝑖

෥𝑢𝑖 < 1

෦𝑚𝑖 < ∞ ෦𝑚𝑖 = ∞

σ𝑟=0
∞ 𝑝𝑖𝑖

(𝑟)
< ∞

෥𝑢𝑖 = 1

σ𝑟=0
∞ 𝑝𝑖𝑖

(𝑟)
= ∞

lim
𝑛→∞

1

𝑛+1
σ𝑟=0
𝑛 𝑝𝑖𝑖

𝑟
> 0 lim

𝑛→∞

1

𝑛+1
σ𝑟=0
𝑛 𝑝𝑖𝑖

𝑟
= 0

Aperiodic

Periodic
σ𝑘=1
∞ Ρ ෩𝑇𝑖 = 𝑘𝑑|𝑋0 = 𝑖 = 1

𝑑 = 1

𝑑 > 1
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Lecture Outline

1 Motivating Examples

2 Limiting Behavior of Irreducible DTMCs

3 More Examples

4 Limiting Behavior of Reducible DTMCs
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Lecture Outline

Motivating Examples
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Motivating Examples
Classification

In this lecture, we will extend our transient behavior analysis to cases where
n is very large. As mentioned earlier, we are interested in

lim
n→∞

p
(n)
ij

lim
n→∞

m
(n)
ij

n + 1
(Cesàro limit)

The first limit is called the limiting probability distribution (since it helps
understand Xn as n→∞). and the second one is the limiting occupancy
distribution, i.e., limiting fraction of time spent in j starting from i .

It turns out that these limits depend on the type of DTMC. For this reason,
we will break down today’s lecture into five cases.

The classification of states that we saw in last class will help us in this

effort. Let’s first look at an example for each of the five cases.

Lecture 3 Limiting Behavior of DTMCs



10/46

Motivating Examples
Classification

Reducible Irreducible

DTMC

Null RecurrentPositive Recurrent

Transient Recurrent

Aperiodic Periodic

Case V

Case I

Case II

Case III Case IV

Lecture 3 Limiting Behavior of DTMCs
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Motivating Examples
Case III: Aperiodic, Positive Recurrent, Irreducible DTMCs

This is an example of a “well-behaved” case. Consider the following two-state
DTMC. Is it irreducible, positive recurrent, and aperiodic?

0 1

0.8 0.6

0.4

0.2

P =

0 1[ ]
0 0.8 0.2
1 0.4 0.6

It is easy to show (or check numerically) that

lim
n→∞

P(n) = lim
n→∞

M(n)

n + 1
=

0 1[ ]
0 2/3 1/3
1 2/3 1/3

Observations:

I Both limits are the same

I Rows in the matrix are identical and add up to 1 (What does it imply?)

Lecture 3 Limiting Behavior of DTMCs
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Motivating Examples
Case IV: Periodic, Positive Recurrent, Irreducible DTMCs

Now consider a periodic two-state DTMC. Is it irreducible and positive recurrent?

0 1

1

1

P =

0 1[ ]
0 0 1
1 1 0

Find P2 and P3? limn→∞ P(n) does not exist because the P(n) exhibit oscillatory
behavior.

P(2n) =

0 1[ ]
0 1 0
1 0 1

P(2n+1) =

0 1[ ]
0 0 1
1 1 0

However, limit of M(n)/(n + 1) exists.

lim
n→∞

M(n)

n + 1
=

0 1[ ]
0 1/2 1/2
1 1/2 1/2
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Motivating Examples
Case IV: Periodic, Positive Recurrent, Irreducible DTMCs

Observations:

I limn→∞ P(n) does not exist but limn→∞
M(n)

n+1 exists

I All rows of limn→∞
M(n)

n+1 matrix are identical and add up to 1

Lecture 3 Limiting Behavior of DTMCs
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Motivating Examples
Case V: Reducible DTMCs

Imagine a 3-state reducible DTMC shown below

1 3
1 1

1/4
2

1/4

1/2

P =

1 2 3[ ]1 1 0 0
2 1/4 1/2 1/4
3 0 0 1

It is easy to show (or check numerically) that

lim
n→∞

P(n) = lim
n→∞

M(n)

n + 1
=

1 2 3[ ]1 1 0 0
2 1/2 0 1/2
3 0 0 1

Observations:

I Both limits are the same

I Rows in the matrix are not identical but add up to 1

Lecture 3 Limiting Behavior of DTMCs
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Motivating Examples
Cases I and II: Transient and Null Recurrent, Irreducible DTMCs

Consider the following simple random walk. Is this DTMC irreducible?

𝑖

𝑝

𝑖 + 1𝑖 − 1

𝑞

𝑝𝑝𝑝

𝑞 𝑞𝑞

The above Markov chain can be recurrent or transient depending on the
value of p. Recall that recurrence, transience, and periodicity are class
properties.

Earlier, we showed that

p
(2n+1)
00 = 0

p
(2n)
00 =

(
2n

n

)
pnqn

Lecture 3 Limiting Behavior of DTMCs
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Motivating Examples
Cases I and II: Transient and Null Recurrent, Irreducible DTMCs

As n→∞, n! can be approximated as
√

2πnn+1/2e−n (Stirling’s formula).

p
(2n)
00 =

(2n)!

n!n!
pnqn

=
(4pq)n√
πn

=
(4p(1− p))n√

πn

≤ 1√
πn

Thus, limn→∞ p
(2n)
00 = 0 and hence p

(n)
00 → 0. One can also show that

p
(n)
ij → 0 and

m
(n)
ij

n+1 → 0.

Note that row sums of P(n) are 1 but not of limn→0P
(n).

Lecture 3 Limiting Behavior of DTMCs
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Motivating Examples
Cases I and II: Transient and Null Recurrent, Irreducible DTMCs

Is the above DTMC transient or recurrent? Using the alternate criteria,

I It is transient if
∑∞

n=0 p
(n)
00 <∞

I It is recurrent if
∑∞

n=0 p
(n)
00 =∞

According to the ratio test,
∑

an converges if an+1/an → a (< 1). Thus the

series
∑ (4p(1−p))n√

πn
converges when p 6= 1/2 and the DTMC is transient.

When p = 1/2, since
∑

1/
√
n diverges, the DTMC is recurrent. In fact, it can

be shown to be null recurrent.

For 2D and 3D random walks with p = 1/4 and 1/6, the problem can be reduced

to verifying if
∑

(1/
√
n)2 and

∑
(1/
√
n)3 converges.

Lecture 3 Limiting Behavior of DTMCs
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Motivating Examples
Cases I and II: Transient and Null Recurrent Irreducible DTMCs

Observations:

I Both limits are the same

I Rows in the matrix are identical but add up to 0

Lecture 3 Limiting Behavior of DTMCs
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Motivating Examples
Summary

From the above examples, we can see that

I lim
n→∞

P(n) doesn’t always exist

I lim
n→∞

M(n)

n + 1
however always exists and equals lim

n→∞
P(n) when the later

exists. (Why is this intuitively true?)

Case lim
n→∞

P(n) lim
n→∞

M(n)

n + 1
Identical Rows Row Sum = 1

I X X X X
II X X X X
III X X X X
IV X X X X
V X X X X

While the limits for Cases I and II are the same, there is a subtle difference that

we will see shortly.

Lecture 3 Limiting Behavior of DTMCs
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Motivating Examples
Summary

The following theorem will help in formally proving the observations made
so far.

Theorem

Let i be a recurrent state and m̃i = E
[
T̃i |X0 = i

]
(can be ∞).

1 If state i is aperiodic,

lim
n→∞

p
(n)
ii = 1/m̃i

2 If state i is periodic with period d > 1,

lim
n→∞

p
(nd)
ii = d/m̃i

The proof is a little involved and follows from another theorem called the

Renewal Theorem.

Lecture 3 Limiting Behavior of DTMCs



21/46

Lecture Outline

Limiting Behavior of Irreducible DTMCs
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Limiting Behavior of Irreducible DTMCs
Case I: Transient DTMCs

Theorem

Let {Xn, n ≥ 0} be an transient, irreducible DTMC. Then

lim
n→∞

p
(n)
ij = 0 ∀ i , j ∈ S

Proof.

Since the DTMC is transient,
∑∞

n=0 p
(n)
ii <∞∀ i ∈ S .Each of the terms in this

series is ≥ 0. Thus, limn→∞ p
(n)
ii = 0.

As the DTMC is irreducible, by definition, j → i and ∃ k ≥ 0 such that
p
(k)
ji > 0. Pick an n ≥ k. Using CK equations,

p
(n)
jj =

∑
r∈S

p
(k)
jr p

(n−k)
rj

≥ p
(k)
ji p

(n−k)
ij

Hence, limn→∞ p
(n−k)
ij = 0. �
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Limiting Behavior of Irreducible DTMCs
Case I: Transient DTMCs

We will see similar results for the null recurrent case. But what’s different
with transient irreducible DTMCs is that, one can show

∞∑
n=0

p
(n)
ij <∞⇒

∞∑
n=0

P
[
Xn ∈ A

]
<∞⇒ P

[
Xn ∈ A i .o.

]
= 0

for any finite subset A ⊆ S . That is, the DTMC will permanently exit the
set A w.p.1.

Note: An sequence of events {An, n ≥ 0} is said to occur infinitely often

(i.o.) if the event happens for a infinite subsequence of whole numbers.
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Limiting Behavior of Irreducible DTMCs
Case II: Null Recurrent DTMCs

Theorem

Let {Xn, n ≥ 0} be an null recurrent, irreducible DTMC. Then

lim
n→∞

p
(n)
ij = 0∀ i , j ∈ S

Proof.

Suppose the DTMC is aperiodic. Since it is null recurrent, from the

‘renewal theorem’, limn→∞ p
(n)
ii = 1/m̃i = 0.

If the DTMC is periodic, again from the ‘renewal theorem’,

limn→∞ p
(nd)
ii = d/m̃i = 0. Since it is periodic, pd

′

ii = 0, for all d ′ which

is not an integral multiple of d . Thus, limn→∞ p
(n)
ii = 0.

Rest of the proof is similar to the transient case. �
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Limiting Behavior of Irreducible DTMCs
Case II: Null Recurrent DTMCs

For null recurrent DTMCS, unlike the transient case, for any finite A ⊆ S ,

∞∑
n=0

p
(n)
ij =∞⇒

∞∑
n=0

P
[
Xn ∈ A

]
=∞⇒ P

[
Xn ∈ A i .o.

]
= 1

Even though p
(n)
ij → 0!

Lecture 3 Limiting Behavior of DTMCs
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Limiting Behavior of Irreducible DTMCs
Case III: Aperiodic, Positive Recurrent DTMCs

Theorem

Let e be a column vector of ones. For an aperiodic, positive recurrent,
irreducible DTMC, there exists unique πj > 0, j ∈ S such that

lim
n→∞

p
(n)
ij = πj , ∀ i , j ∈ S

πP = π (Balance Equation)

πe = 1 (Normalizing Equation)

Proof (sketch).

Proof of limn→∞ p
(n)
ij : If i = j , ‘renewal theorem’ is applicable. Suppose i 6= j .

Consider the pmf of first passage time T̃j , given X0 = i .

um = P
[
T̃j = m|X0 = i

]
What is the support of T̃j? Thus,

∑∞
m=0 um = 1.

p
(n)
ij =

n∑
m=1

ump
(n−m)
jj

Lecture 3 Limiting Behavior of DTMCs
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Limiting Behavior of Irreducible DTMCs
Case III: Aperiodic, Positive Recurrent DTMCs

Proof (sketch).

Choose N such that, forall n ≥ N,
∞∑

m=N+1

um ≤ ε/4 and |p(n)
jj − πj | ≤ ε/2

Using, the earlier expression for p
(n)
ij , above inequalities, and triangle inequality,

it can be shown that, for n ≥ 2N,

|p(n)
ij − πj | ≤ ε

Proof of πP = π: Using CK equations,

p
(n+m)
jj =

∑
i∈S

p
(m)
ji p

(n)
ij

Using bounded convergence theorem and setting m→∞,

πj =
∑
i∈S

πip
(n)
ij

Lecture 3 Limiting Behavior of DTMCs
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Limiting Behavior of Irreducible DTMCs
Case III: Aperiodic, Positive Recurrent DTMCs

Proof (sketch).

Setting n = 1 in the above equation gives πP = π. Taking limits n→∞ yields
πe = 1 as shown below:

πj =
∑
i∈S

πi lim
n→∞

p
(n)
ij

Establishing uniqueness of πs is trivial. �

Aperiodic, positive recurrent, irreducible DTMCs are called ergodic DTMCs.
This theorem is also popularly known as ergodic theorem.

The limiting probability distribution is also called stationary distribution
because if we start with an initial distribution, a = π, then the pmf of
X1,X2, . . . is equal to π.

Can you draw a connection between πP = π and eigenvalues of P?

Lecture 3 Limiting Behavior of DTMCs
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Limiting Behavior of Irreducible DTMCs
Case IV: Periodic, Positive Recurrent DTMCs

We have seen an example which proves that periodic, positive recurrent,
irreducible DTMCs do not have a limiting distribution.

But the limiting occupancy distribution can be computed solving the bal-
ance and normalizing equations

Theorem

Let e be a column vector of ones. For a periodic, positive recurrent,
irreducible DTMC, there exists unique πj > 0, j ∈ S such that

lim
n→∞

m
(n)
ij

n + 1
= πj , ∀ i , j ∈ S

πP = π

πe = 1

Lecture 3 Limiting Behavior of DTMCs
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Limiting Behavior of Irreducible DTMCs
Necessary and Sufficient Conditions

It turns out that one can check for positive recurrence of irreducible DTMCs
using the conditions we just derived.

Theorem

An irreducible DTMC is positive recurrent ⇔ ∃π ≥ 0 that satisfies

πP = π

πe = 1

The interpretation of π however depends on whether the DTMC is periodic

or a periodic.

Lecture 3 Limiting Behavior of DTMCs



31/46

Limiting Behavior of Irreducible DTMCs
Recap

Case lim
n→∞

P(n) lim
n→∞

M(n)

n + 1
Identical Rows Row Sum = 1

I X X X X
II X X X X
III X X X X
IV X X X X

Let’s first revisit some examples before studying Case V.

Lecture 3 Limiting Behavior of DTMCs
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Lecture Outline

More Examples
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More Examples
Example 1: Shuffling

Recall our card shuffling example from the first class. Which of the five
cases does this fall into?

♣♥♠ ♣♠♥ ♥♠♣ ♥♣♠ ♠♣♥ ♠♥♣


♣♥♠ 0 0.5 0 0 0.5 0
♣♠♥ 0.5 0 0 0.5 0 0
♥♠♣ 0.5 0 0 0.5 0 0
♥♣♠ 0 0 0.5 0 0 0.5
♠♣♥ 0 0 0.5 0 0 0.5
♠♥♣ 0 0.5 0 0 0.5 0

1 32 4 5 6

Lecture 3 Limiting Behavior of DTMCs
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More Examples
Example 1: Shuffling

Solving

π


0 0.5 0 0 0.5 0

0.5 0 0 0.5 0 0
0.5 0 0 0.5 0 0
0 0 0.5 0 0 0.5
0 0 0.5 0 0 0.5
0 0.5 0 0 0.5 0

 = π

gives π = [1/6 1/6 1/6 1/6 1/6 1/6]. A fair shuffling strategy must

produce the uniform distribution in the limit and good ones must mix

quickly. (The deterministic strategy results in a reducible DTMC.)

Additional Reading:

Bayer, D., & Diaconis, P. (1992). Trailing the dovetail shuffle to its lair. The

Annals of Applied Probability, 2(2), 294-313.

Addiction to gambling is injurious to health.
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More Examples
Example 2: PageRank Algorithm

Is the page rank example discussed earlier aperiodic, positive recurrent,
and irreducible?

C =

1 2 3 4


1 0 1 0 1
2 1 0 1 1
3 1 0 0 0
4 0 0 0 0

P =

1 2 3 4


1 0 1/2 0 1/2
2 1/3 0 1/3 1/3
3 1 0 0 0
4 1/4 1/4 1/4 1/4

Solving πP = π, we get [0.3077 0.2308 0.1538 0.3077]. Hence, pages 1

and 2 are ranked first, followed by 2 and 3.

Additional Reading:
Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web
search engine. Computer networks and ISDN systems, 30(1-7), 107-117.
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More Examples
Example 3: Chord Progressions

All the transition probability matrix of the four composers corresponds to
Case III. The results of solving πP = π are shown below:

Palestrina: [0.143 0.143 0.143 0.143 0.143 0.143 0.143]

Bach: [0.344 0.089 0.016 0.131 0.273 0.067 0.080]

Mozart: [0.435 0.086 0.001 0.073 0.330 0.037 0.038]

Beethoven: [0.317 0.120 0.012 0.060 0.328 0.034 0.130]

Lecture 3 Limiting Behavior of DTMCs
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More Examples
Example 4: Success Runs

Consider the general success runs problem. Is it irreducible? Find it’s
limiting distribution.

2
𝑝2

𝑞2

𝑝1

𝑞3

𝑞1

10

𝑞0

3
𝑝0

Recall that one can directly solve the balance and normalizing equation

and if the solution exists, the DTMC is positive recurrent.

Lecture 3 Limiting Behavior of DTMCs
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More Examples
Example 4: Success Runs

The balance equations can be simplified as

πi+1 = piπi ∀ i ≥ 0

Solving this recursively, all π’s can be written in terms of π0 as follows:

πi = ρiπ0 ∀ i ≥ 0

where ρi = p0p1 · · · pi−1 ∀ i ≥ 1 and ρ0 = 1.

Using the normalizing equation, π0 = (
∑∞

i=0 ρi )
−1. Thus, a solution to

the above system exists only if
∑∞

i=0 ρi <∞.

Else, the DTMC is null recurrent or transient and the limiting probabilities
are all 0s. It can further be shown from basic definitions that,

I The DTMC is null recurrent if
∑∞

i=0 ρi =∞ and
∑∞

i=0 qi =∞
I The DTMC is transient if

∑∞
i=0 qi <∞

Lecture 3 Limiting Behavior of DTMCs
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Lecture Outline

Limiting Behavior of Reducible DTMCs
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Limiting Behavior of Reducible DTMCs
Introduction

Recall that state spaces of reducible DTMCs can be partitioned as

S = C1 ∪ C2 ∪ . . . ∪ Ck ∪ C

Let us first renumber states such that i ∈ Cr and j ∈ Cs with r < s implies
i < j . Further, i ∈ Cr and j ∈ C implies i < j . Then, the transition matrix can
be written in the following format

P(1) 0 . . . 0 0
0 P(2) . . . 0 0
...

...
. . .

...
...

0 0 . . . P(k) 0
D Q


where P(1), . . . ,P(k) are the transition matrices of the k irreducible classes.

Q is a |C| × |C| sub-stochastic matrix (row sums are ≤ 1, why?) and D is

a |C| × |S\{C}| matrix. We know from earlier analysis limiting distribution of

P(r)(n). Since states in C are transient, one can show that Q(n) → 0.

Lecture 3 Limiting Behavior of DTMCs
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Limiting Behavior of Reducible DTMCs
Introduction

Thus, the limiting distribution of reducible DTMCs reduces to studying limn→∞ D(n).
Let the elements of the D matrix be denoted by dij .

Consider the following DTMC

P =

1 2 3 4 5 6


1 1 0 0 0 0 0
2 1/4 1/2 0 1/4 0 0
3 0 0 0 1 0 0
4 1/16 1/4 1/8 1/4 1/4 1/16
5 0 0 0 1/4 1/2 1/4
6 0 0 0 0 0 1

Partition the state space and convert it to standard form.

1 32 4 5 6

Lecture 3 Limiting Behavior of DTMCs
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Limiting Behavior of Reducible DTMCs
Introduction

States 1 and 6 form closed communicating classes.

1 32 4 5 6

1 23 4 5 6

The D and Q matrices are shown in blue and green respectively.

P =

1 2 3 4 5 6


1 1 0 0 0 0 0
2 0 1 0 0 0 0
3 1/4 0 1/2 0 1/4 0
4 0 0 0 0 1 0
5 1/16 1/16 1/4 1/8 1/4 1/4
6 0 1/4 0 0 1/4 1/2
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Limiting Behavior of Reducible DTMCs
Key Results

We first need recurrence and transience-style definitions to understand the
limiting behavior of D. Define,

T̃ (r) = min{n > 0 : Xn ∈ Cr}, 1 ≤ r ≤ k

ũi (r) = P
[
T̃ (r) <∞|X0 = i

]
, 1 ≤ r ≤ k , i ∈ C

T̃ (r) is the first passage time and ũi (r) is the absorption probability as it
is the probability with which we end up in Cr starting from a state in C.

One can find ũi s by solving

ũi (r) =
∑
j∈Cr

pij +
∑
j∈C

pij ũj(r)

Lecture 3 Limiting Behavior of DTMCs
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Limiting Behavior of Reducible DTMCs
Key Results

Theorem

Let i ∈ C and j ∈ Cr .

1 If Cr is transient or null recurrent d
(n)
ij → 0

2 If Cr is aperiodic and positive recurrent, d
(n)
ij → ui (r)πj , where πjs are

derived from limiting distribution of P(r)(n)

3 If Cr is periodic and positive recurrent, d
(n)
ij does not have a limit.

However
∑n

m=0 d
(m)
ij /(n + 1)→ ui (r)πj , where πjs are derived from

limiting distribution of P(r)(n)

Lecture 3 Limiting Behavior of DTMCs
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Limiting Behavior of Reducible DTMCs
Example

In the example that we discussed earlier, it can be shown that[
u3(1) u4(1) u5(1) u6(1)

]
=
[
3/4 1/2 1/2 1/4

][
u3(2) u4(2) u5(2) u6(2)

]
=
[
1/4 1/2 1/2 3/4

]
Since, πi = 1 for each of the two closed communicating classes (states 1 and 2),
we can write the limit of D(n) as

D(n) →

1 2


3 3/4 1/4
4 1/2 1/2
5 1/2 1/2
6 1/4 3/4

P(n) →

1 2 3 4 5 6


1 1 0 0 0 0 0
2 0 1 0 0 0 0
3 3/4 1/4 0 0 0 0
4 1/2 1/2 0 0 0 0
5 1/2 1/2 0 0 0 0
6 1/4 3/4 0 0 0 0
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Your Moment of Zen

Lecture 3 Limiting Behavior of DTMCs


