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Definition (Markov Property)

A stochastic process {X,, n > 0} with a countable state space S is called
aDTMCifVn>0,ij€S,

IPJ[)<n+1 :J|Xn = iaXn—laXn—la cee aXO] = IPJ[)<n+1 :J|Xn = ’]

The probability with which the system moves from i to j, p;, is called the
transition probability and the matrix of p;; values is called the one-step
transition probability matrix.

P = [pil 551
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The transition probability matrix can also be visualized as a directed graph
in which the states are nodes and an arc (i, ) exists only if p; > 0.

1 2 3

1 101 02 0.7
P= 2 [0.6 0 0.4]
3 104 0 06

The P matrix alone doesn't fully describe a DTMC. We'd also need to know
the initial distribution.

a=P[X =i]Vies

Let a be row vector of a;'s. A Markov chain can thus be fully specified
using (S, P, a).
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Most common variant of the random walk allows steps of size 0,1, and —1
on a 1D lattice.

State-Dependent Random Walk:

Ti Pi
T Q
i dbodil:
qi

Simple Random Walk:

p P P p
el ou
a q
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Suppose a coin is tossed repeatedly and the probability of seeing heads
and tails is p and g. Assume a player wins X1 every time it is heads and
looses his entire winnings if it is tails.

Let X, represent the player's cash after n tosses. The DTMC can be
represented using the following transition diagram.
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Transient Behavior
Classification of States
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Transient Behavior
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Introduction

Given a Markov chain, we'll address the following two questions that reflect
the transient behavior:

» What is the marginal distribution of X,,? We can subsequently
address questions on the expected values etc.

» What is the expected time spent in various states up to time n.
(Also called occupancy times.)
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Marginal Distribution

Let {X,,n > 0} be a DTMC on S = Z* with transition matrix P and
initial distribution a. For a given n, the marginal distribution of X, is

3" =P[X,=j]VjeS
=S P[X, = j|Xo = i]P[Xo = i] (Law of Total Probability)

i€eS

ieS

(n)
ij
the n-step transition matrix P(") as

where p:.” is the probability of going from i to j in exactly n steps. Define

P = [plgjn)]|5|x|5|

Hence, to compute the marginal distributions, we need to know the n-step

transition matrices.
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Marginal Distribution

Intuitively, to go from i to j in n steps, we need to transition from i to some
state r in k steps and from r to j in remaining (n — k) steps.

Theorem (Chapman-Kolmogorov Equations)

The n-step transition probabilities satisfy

AP =3 PP vijes,0< k<n
FES

P =P[Xn = j1Xo = i]
= P[Xo =4, Xe = r[Xo =]

res
=Y "P[X, = jIXk = r, X0 = i{]P[Xk = r|Xo = i](LoToP)
res

2 Transient Behavior and Classification of States
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Marginal Distribution

= EP[X,, = Jj|Xk = r]IP[Xk =r|Xo = i] (Markov Property)
res

= ZP[X,,_k = j|Xo = r]P[Xk = r|Xo = i](Time Homogeneity)
res

ir Frj
res

The CK equations can be compactly written as

pn — plk) p(n—k)
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Marginal Distribution

Applying the CK equations recursively,

Corollary

p( = pr

Thus, the probability mass function of X, can be written as
aM = apn

For example, consider the two-state DTMC with transition matrix

0 1 0 1
p— 0 |08 02 pt_ 0 [0.675 0.325
1 104 06 1 [0.650 0.350

Say a = [0.5 0.5], then the pmf of X is [0.662 0.338]
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Computing Matrix Powers

The problem of finding the marginal distributions, thus simplifies to com-
puting P". Regular multiplication often leads to numerical instability or is

intractable.
Let's look at two cases:
> Finite state spaces

» Countably infinite state spaces
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Computing Matrix Powers

For finite state problems, we could use some tricks if we are lucky. Consider
a square matrix A. Let A\1,..., A\, be the eigenvalues of A (note that they
satisfy det(A/ — A) = 0). Suppose the right eigenvector of \; is x;.

Axj = Ajx;

Define a matrix X whose columns are the right eigenvectors associated
with Ay, ..., Ap.

Tt .
X=1|x1 X ... Xnm
ol
Then,
AX =[Axy Axa ... Axp]
= [)\1X1 )\1X2 N )\me] = XD
where D = diag(A1, A2y .- -y Am)- 14/43
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Computing Matrix Powers

Suppose X is invertible. (A sufficient condition for this is that all eigen-
values are distinct.) In this case,

AX = XD
A= XDX!

If the above condition holds, we say that A is diagonalizable. In fact, we
can also show that

— i —
X t=
— Ym —
where y; is the left eigenvector of \; (i.e., y;A = A;y;). Computing powers
of diagonalizable matrices is easy!

A" = (XDX1)(XDX 1) .- (XDX1) = XD"X !
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Computing Matrix Powers

Caution: Not all transition matrices are diagonalizable. For example,
5/12 5/12 1/6
1/4  1/4 1/2
1/3 1/3 1/3

The method discussed above only works if they are diagonalizable.
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Computing Matrix Powers

Diagonalizable matrices offer more insight into the limiting behavior.

Theorem (Perron—Frobenius)

Let P be a transition matrix with m eigenvalues A1, ..., \y,,. Then
At least one of them is 1. (Why?)
N <1Vie{l,2,...,m}

Recall that a{™ = aP". When the eigenvalues are unique, the set of
eigenvectors form a basis, and thus we can write

a=cyit+ay+...+cmym
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Computing Matrix Powers

Post-multiplying by P,

aP =cayP+ownP+...+ cnymP
aP =calyi+oloys + ...+ cmAmYm

Post-multiplying by P repeatedly,

3P2 = c1/\1y1P + Cg/\zyQP 4+ ...+ Cm)\mymP
aP? = )3y 4+ A3y 4 o+ Cn A2 Ym

aP" = Cl/\fyl + Cg)\gyz + ...+ Cm)\nmym

Using the Perron-Frobenius theorem, the terms containing A's which have
magnitudes strictly less than 1 will vanish as n — oc.

The rate of convergence will thus depend on the magnitude of the second
largest eigenvalue. Smaller the better! 18/43
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Computing Matrix Powers

Diagonalization-based methods cannot be applied to DTMCs with count-
ably infinite states. One can use the problem structure to derive analytical
expressions in most cases.

For instance, consider the simple random walk

14 14 14 14
D ol
\/@Y@ |

q

What is the probability of returning to O starting from 0 in n steps pég) if

> nis odd
> nis even

(n).

Generalize this result and write an expression for p;;
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Computing Matrix Powers

We can show that

(n) <n> p?q® if n4j — i is even
Py = b
0 otherwise

where a= (n+j—i)/2and b= (n+i—j)/2.
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Occupancy Times

We might sometimes be interested in the expected amount of time spent
by the system in different states up to time n (e.g., parking).

Such metrics are called occupancy times. Let \/j(") be the number of visits

to j over {0,1,...,n}. Mathematically, occupancy time of j up to time n
starting from i is

m” =E[V"|Xo=1i],¥ij€Sn>0

The matrix of m,(j") values, also called the occupancy time matrix, is rep-
resented by

M — [m:(jn)] "

The occupancy times matrix can be computed from the transition matrix!
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Occupancy Times

Let P° = I. For a fixed n, M\" = > P
=}

Proof.

Fix a j € S. Define a random variable Z, which is 1 if X, = j and is 0
otherwise. Then, Vj(") =Y o Z

m =E[V"|X = i]

=E[)  Z|X =]
r=0
=> E[Z|X =]
r=0
=Y PX =iX=i=>_p
r=0 r=0
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Occupancy Times

We'll now extend this analysis to instances in which n is very large. Specif-
ically, we will look at the following limits
lim p{”

n—oo' Y

. n
lim m,(-)
n—oo Y

and derive conditions under which they exist and find methods to compute
them.

But first, we will classify the Markov chain into different classes, which will
help us in studying these limits.
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Classification of States
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Communicating Classes

Definition (Accessibility)

A state j is said to be accessible from i if 3 n > 0 such that p,g-") > 0 and we
write i — j

Definition (Communicating)

States / and j are said to be communicating (denoted by i < j) if i — j and
Jj—i.

It is easy to verify these properties by checking for directed paths in the transition
diagram.

> Reflexivity: i <> i
> Symmetry: [ <> j & j <>
> Transitivity: i <> j,j <> k=i < k

25/43
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Communicating Classes

Definition (Communicating Class)

A set C C S is a communicating class if

i€ C,j€ C= i< j(any two states in C must communicate)
i€ C,i<+»j=j€ C(Cismaximal)

@/—G)
®/

N

> {1,2,3} and {4,5} are communicating classes.

> {1,3} is not.
26/43
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Communicating Classes

Definition (Closed Communicating Class)

A communicating class is said to be closed if i € C and j ¢ C, then i = j.

Think of closed communicating classes as a black hole. Once the DTMC enters
it, it can never leave.

®/—®
GD/

N

{1,2,3} and {4,5} are communicating classes but only {1,2, 3} is closed.
27/43
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Irreducibility

The state space S of a DTMC can be partitioned as
S=GuUuGuU...UCUcC

where Cy, ..., Cy is the set of closed communicating classes. (k in the
above equation can potentially be co.) C is assumed to be the set of
states belonging to communicating classes that are not closed.

Definition (Irreducibility)

A DTMC is said to be irreducible if its state space S is a closed
communicating class. Else it is called reducible.
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Irreducibility

4 1-p q 1 q
T e ol &
1-q 1-q
Irreducible DTMC Reducible DTMC
For the figure on the left S = C; = {1,2}. For that on the right, S = G UC =

{1tu{2}

Is this DTMC irreducible?
1 1/2 1/2 1/2
. o el el
\_/ \_/
1/2 1/2 1/2 1/2
Note that all properties discussed so far depend only on the signs of the transition

probabilities and not on the magnitudes. 20/43
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Accessibility

v

Communicating

» Communicating Class

v

Closed Communicating Class

v

Irreducibility

We'll now look at other ways to classify states that may depend on the
magnitudes of the transition probabilities.
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Recurrence, Transience, and Periodicity

To study this new classification, let's first define a random variable called
the passage time

Ti=min{n>0:X,=1i}
It represents the time step when the process visits i for the first time
(ignoring the initial state).What is the support of T;?

Given a random variable, we are typically interested in its pmf and expected
value. In the context of DTMCs, the following functions are of interest.

Probability that the return time is finite
G =P[T; < ool Xo = i

Expected return time _ ~ )
m; = ]E[T,lXO = I]

Interpretation

{; can also be viewed as the probability with which i is revisited and m; is

the expected time between consecutive visits.
31/43
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Recurrence, Transience, and Periodicity

Ti=min{n>0:X,=1i}
i =P[T; < co|Xo = i]
m; =E[Ti|Xo = i

> What can you say about m; if &; < 1?7 (d; < 1 = M; = 00)

> What can you say about m; if &; =17 (4; =1 # m; # o0)

A state / is said to be recurrent if 7; = 1. It is transient if i; < 1.

A recurrent state i/ is said positive recurrent if m; < oco. It is null

recurrent if m; = oco.
32/43
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v

v

v

v

Accessibility

Communicating
Communicating Class
Closed Communicating Class

Irreducibility

Transient

Recurrent

| Positive ;ecurrent | | Null Recurrent |
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Recurrence, Transience, and Periodicity

Consider the modified-success runs with the following transition probabil-
ities.

Compute
» P[To = n|Xo = 0], where n > 1

> g and Mg
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Recurrence, Transience, and Periodicity

Consider the following Markov chain
1/2 1/2 1/2
‘O. ol e el
1/2 1/2 1/2 1/2

Which of the following is true for state 0

A closed communicating class
Transient state

Positive recurrent

Null recurrent

What about state 17

Lecture 2
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Recurrence, Transience, and Periodicity

Recurrence and transience of states can also be established using the fol-
lowing set of results.

These results will also come in handy when we study the limiting behavior
of DTMGs.

First, recall from the discussion on occupancy times that \/,-(") is the number
of visits to 7 over {0,1,...,n}. And the occupancy time of i starting from
i up to time nis

m{) =E[V{"|Xo = i],¥i€ S,n>0

Also, recall that

i = > B
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Recurrence, Transience, and Periodicity

oo oo
A state i is recurrent < Z pfl.’) = oo and is transient < Z p(.’) < o0

n
r=0 r=0

Proof (sketch).
Define a random variable V; as the number of visits to i over the infinite
horizon. V,.(") — V; almost surely. Hence, we can write
E[Vi[X =i] = lim E[V\"|Xo = i]
n—oo
(n)

ii

= lim m
n—oo

-y ("
;pn

So we need to show that if state i is recurrent < E[V;|Xo = i] = 0o and is
transient E[Vj|Xo = i] < o0

37/43

Py

Lecture 2 Transient Behavior and Classification of States



Recurrence, Transience, and Periodicity

Proof (sketch).

By definition, E[V;[Xo = i] ZkP i = k|Xo = i]

If state i is recurrent, P[V; = oo|Xo =] = 1. Hence,

E[Vi|Xo = i] = 00

Recall that &; can also be interpreted as the probability of coming back to i
from i. Hence, if i is transnent P[V; = k|[Xo = i] = i (1 — &i). Therefore,

E[Vi[X =i] = Zk"" Y1 - )

=(1-— ) Z kiif ' (arithmetico—geometric series)

1 ij

(1 =)

]:(1—L7,-)_1<oo

LY
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Recurrence, Transience, and Periodicity

Similar conditions can be derived to distinguish between null and positive
recurrent states.

To do so, recall that m; is the expected time between consecutive visits.
Hence, 1/m; is the number of visits to state 7 in unit time, which can be
mathematically written as

|
lim T

m (r)
n—socon-41 n—oon-+1

ii

r=0

Theorem

A recurrent state is

1 . (r)
» Positive recurrent lim s
itive u & Jim —— E p;’ >0
r=0
n

1
> Null recurrent < n'L"SO — ; pl§l_r) =0
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Periodicity

If the period of a state i is d, then its return times are integer multiples of
(d) _

ii

d. For any d’ that is not an integer multiple of d, p

What is the period of the states in the simple random walk?
p p 14 p

T~ \E/ g
q q

Let i be a recurrent state and d be the largest positive integer such that
d P[Ti=kdXo=i]=1
k=1
> | is aperiodic if d =1

> | is periodic with period d if d > 1

Note that periodicity does not depend on the magnitude of transition probabili-

ties. Is success runs aperiodic? 40/43
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Class Properties

If two states i <> j, and i is transient (positive recurrent, null recurrent,
periodic), then j is transient (positive recurrent, null recurrent, periodic)

If one state in a communicating/closed communicating class/irreducible
DTMC has one of the above properties, then all the remaining states are
guaranteed to have the same property.

For this reason, these classification are also referred to as class properties.
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Summary

Accessibility (i — )

Communicating (i > j)

Communicating Class (All states communicate and the set is maximal)
Closed Communicating Class (‘Blackhole’)

Irreducibility (The entire DTMC is a ‘blackhole’)

vyvyVvyYyvyy

Tep) <o 2oy =
/[ @<t m=1
S P[T =|kd| X = i] = 1
Transient Recurrent

i 1 () . 1
Jim = Ereopy” > 0 Jim ==V p =0

7 m<ow M=o\

| Positive Recurrent | Null Recurrent
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I USED TO HATE WRITING
ASSIGNMENTS , BUT Now
T ENJOY THEM.

WITH A LITTLE PRACTICE,

WRITING CAN BE AN

INTIMIDATING  AND

IMPENETRABLE FOG!

WANT TO SEE MY BooK
REPORT ?

T REALIZED THAT THE
PURPOSE OF WRITING IS
TO INFLATE. WEAK \DEAS,
OBSCURE POOR REASONING,
AND INMIBIT CLARITY.

"TUE DYNAMICS OF INTERBEING
AND MONOLOGICAL IMPERATINES
N DICK AND JANE = A STUDY

IN PSYCHIC TRANSRELATIONAL

ACADEMIA,
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