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Previously on Markov Decision Processes

Definition (Markov Property)

A stochastic process {Xn, n ≥ 0} with a countable state space S is called
a DTMC if ∀ n ≥ 0, i , j ∈ S ,

P[Xn+1 = j |Xn = i ,Xn−1,Xn−1, . . . ,X0] = P[Xn+1 = j |Xn = i ]

The probability with which the system moves from i to j , pij , is called the
transition probability and the matrix of pij values is called the one-step
transition probability matrix.

P =
[
pij
]
|S|×|S|
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Previously on Markov Decision Processes

The transition probability matrix can also be visualized as a directed graph
in which the states are nodes and an arc (i , j) exists only if pij > 0.

P =

1 2 3[ ]1 0.1 0.2 0.7
2 0.6 0 0.4
3 0.4 0 0.6
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The P matrix alone doesn’t fully describe a DTMC. We’d also need to know
the initial distribution.

ai = P
[
X0 = i

]
∀ i ∈ S

Let a be row vector of ai ’s. A Markov chain can thus be fully specified

using (S ,P, a).
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Previously on Markov Decision Processes

Most common variant of the random walk allows steps of size 0, 1, and −1
on a 1D lattice.

State-Dependent Random Walk:

𝑖

𝑝𝑖

𝑖 + 1𝑖 − 1

𝑞𝑖

𝑟𝑖

Simple Random Walk:

𝑖

𝑝

𝑖 + 1𝑖 − 1

𝑞

𝑝𝑝𝑝

𝑞 𝑞𝑞
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Previously on Markov Decision Processes

Suppose a coin is tossed repeatedly and the probability of seeing heads
and tails is p and q. Assume a player wins |1 every time it is heads and
looses his entire winnings if it is tails.

Let Xn represent the player’s cash after n tosses. The DTMC can be
represented using the following transition diagram.

2
𝑝

𝑞

𝑝

𝑞

𝑞

10

𝑞

3
𝑝
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Lecture Outline

1 Transient Behavior

2 Classification of States
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Lecture Outline

Transient Behavior

Lecture 2 Transient Behavior and Classification of States



8/43

Transient Behavior
Introduction

Given a Markov chain, we’ll address the following two questions that reflect
the transient behavior:

I What is the marginal distribution of Xn? We can subsequently
address questions on the expected values etc.

I What is the expected time spent in various states up to time n.
(Also called occupancy times.)
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Transient Behavior
Marginal Distribution

Let {Xn, n ≥ 0} be a DTMC on S = Z+ with transition matrix P and
initial distribution a. For a given n, the marginal distribution of Xn is

a
(n)
j = P

[
Xn = j

]
∀ j ∈ S

=
∑
i∈S

P
[
Xn = j |X0 = i

]
P
[
X0 = i

]
(Law of Total Probability)

=
∑
i∈S

aip
(n)
ij

where p
(n)
ij is the probability of going from i to j in exactly n steps. Define

the n-step transition matrix P(n) as

P(n) =
[
p

(n)
ij

]
|S|×|S|

Hence, to compute the marginal distributions, we need to know the n-step

transition matrices.
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Transient Behavior
Marginal Distribution

Intuitively, to go from i to j in n steps, we need to transition from i to some
state r in k steps and from r to j in remaining (n − k) steps.

Theorem (Chapman-Kolmogorov Equations)

The n-step transition probabilities satisfy

p
(n)
ij =

∑
r∈S

p
(k)
ir p

(n−k)
rj , ∀ i , j ∈ S , 0 ≤ k ≤ n

Proof.

p
(n)
ij = P

[
Xn = j |X0 = i

]
=
∑
r∈S

P
[
Xn = j ,Xk = r |X0 = i

]
=
∑
r∈S

P
[
Xn = j |Xk = r ,X0 = i

]
P
[
Xk = r |X0 = i

]
(LoToP)
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Transient Behavior
Marginal Distribution

Proof.

=
∑
r∈S

P
[
Xn = j |Xk = r

]
P
[
Xk = r |X0 = i

]
(Markov Property)

=
∑
r∈S

P
[
Xn−k = j |X0 = r

]
P
[
Xk = r |X0 = i

]
(Time Homogeneity)

=
∑
r∈S

p
(k)
ir p

(n−k)
rj

�

The CK equations can be compactly written as

P(n) = P(k)P(n−k)
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Transient Behavior
Marginal Distribution

Applying the CK equations recursively,

Corollary

P(n) = Pn

Thus, the probability mass function of Xn can be written as

a(n) = aPn

For example, consider the two-state DTMC with transition matrix

P =

0 1[ ]
0 0.8 0.2
1 0.4 0.6

P4 =

0 1[ ]
0 0.675 0.325
1 0.650 0.350

Say a = [0.5 0.5], then the pmf of X4 is [0.662 0.338]
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Transient Behavior
Computing Matrix Powers

The problem of finding the marginal distributions, thus simplifies to com-
puting Pn. Regular multiplication often leads to numerical instability or is
intractable.

Let’s look at two cases:

I Finite state spaces

I Countably infinite state spaces

Lecture 2 Transient Behavior and Classification of States
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Transient Behavior
Computing Matrix Powers

For finite state problems, we could use some tricks if we are lucky. Consider
a square matrix A. Let λ1, . . . , λm be the eigenvalues of A (note that they
satisfy det(λI − A) = 0). Suppose the right eigenvector of λj is xj .

Axj = λjxj

Define a matrix X whose columns are the right eigenvectors associated
with λ1, . . . , λm.

X =

 ↑ ↑ . . . ↑
x1 x2 . . . xm
↓ ↓ . . . ↓


Then,

AX = [Ax1 Ax2 . . . Axm]

= [λ1x1 λ1x2 . . . λmxm] = XD

where D = diag(λ1, λ2, . . . , λm).
Lecture 2 Transient Behavior and Classification of States
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Transient Behavior
Computing Matrix Powers

Suppose X is invertible. (A sufficient condition for this is that all eigen-
values are distinct.) In this case,

AX = XD

A = XDX−1

If the above condition holds, we say that A is diagonalizable. In fact, we
can also show that

X−1 =

←− y1 −→
...

...
...

←− ym −→


where yj is the left eigenvector of λj (i.e., yjA = λjyj). Computing powers
of diagonalizable matrices is easy!

An = (XDX−1)(XDX−1) · · · (XDX−1) = XDnX−1
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Transient Behavior
Computing Matrix Powers

Caution: Not all transition matrices are diagonalizable. For example,5/12 5/12 1/6
1/4 1/4 1/2
1/3 1/3 1/3


The method discussed above only works if they are diagonalizable.
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Transient Behavior
Computing Matrix Powers

Diagonalizable matrices offer more insight into the limiting behavior.

Theorem (Perron−Frobenius)

Let P be a transition matrix with m eigenvalues λ1, . . . , λm. Then

1 At least one of them is 1. (Why?)

2 |λi | ≤ 1 ∀ i ∈ {1, 2, . . . ,m}

Recall that a(n) = aPn. When the eigenvalues are unique, the set of
eigenvectors form a basis, and thus we can write

a = c1y1 + c2y2 + . . .+ cmym

Lecture 2 Transient Behavior and Classification of States
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Transient Behavior
Computing Matrix Powers

Post-multiplying by P,

aP = c1y1P + c2y2P + . . .+ cmymP

aP = c1λ1y1 + c2λ2y2 + . . .+ cmλmym

Post-multiplying by P repeatedly,

aP2 = c1λ1y1P + c2λ2y2P + . . .+ cmλmymP

aP2 = c1λ
2
1y1 + c2λ

2
2y2 + . . .+ cmλ

2
mym

...

aPn = c1λ
n
1y1 + c2λ

n
2y2 + . . .+ cmλ

n
mym

Using the Perron-Frobenius theorem, the terms containing λ’s which have
magnitudes strictly less than 1 will vanish as n→∞.

The rate of convergence will thus depend on the magnitude of the second
largest eigenvalue. Smaller the better!

Lecture 2 Transient Behavior and Classification of States
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Transient Behavior
Computing Matrix Powers

Diagonalization-based methods cannot be applied to DTMCs with count-
ably infinite states. One can use the problem structure to derive analytical
expressions in most cases.

For instance, consider the simple random walk

𝑖

𝑝

𝑖 + 1𝑖 − 1

𝑞

𝑝𝑝𝑝

𝑞 𝑞𝑞

What is the probability of returning to 0 starting from 0 in n steps p
(n)
00 if

I n is odd

I n is even

Generalize this result and write an expression for p
(n)
ij .
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20/43

Transient Behavior
Computing Matrix Powers

We can show that

p
(n)
ij =


(
n

b

)
paqb if n + j − i is even

0 otherwise

where a = (n + j − i)/2 and b = (n + i − j)/2.

Lecture 2 Transient Behavior and Classification of States
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Transient Behavior
Occupancy Times

We might sometimes be interested in the expected amount of time spent
by the system in different states up to time n (e.g., parking).

Such metrics are called occupancy times. Let V
(n)
j be the number of visits

to j over {0, 1, . . . , n}. Mathematically, occupancy time of j up to time n
starting from i is

m
(n)
ij = E

[
V

(n)
j |X0 = i

]
, ∀ i , j ∈ S , n ≥ 0

The matrix of m
(n)
ij values, also called the occupancy time matrix, is rep-

resented by

M(n) =
[
m

(n)
ij

]
|S|×|S|

The occupancy times matrix can be computed from the transition matrix!
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Transient Behavior
Occupancy Times

Theorem

Let P0 = I . For a fixed n, M(n) =
n∑

r=0

P r

Proof.

Fix a j ∈ S . Define a random variable Zr which is 1 if Xr = j and is 0
otherwise. Then, V

(n)
j =

∑n
r=0 Zr .

m
(n)
ij = E

[
V

(n)
j |X0 = i

]
= E

[ n∑
r=0

Zr |X0 = i
]

=
n∑

r=0

E
[
Zr |X0 = i

]
=

n∑
r=0

P
[
Xr = j |X0 = i

]
=

n∑
r=0

p
(r)
ij

�
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Transient Behavior
Occupancy Times

We’ll now extend this analysis to instances in which n is very large. Specif-
ically, we will look at the following limits

lim
n→∞

p
(n)
ij

lim
n→∞

m
(n)
ij

and derive conditions under which they exist and find methods to compute
them.

But first, we will classify the Markov chain into different classes, which will
help us in studying these limits.

Lecture 2 Transient Behavior and Classification of States
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Lecture Outline

Classification of States
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Classification of States
Communicating Classes

Definition (Accessibility)

A state j is said to be accessible from i if ∃ n ≥ 0 such that p
(n)
ij > 0 and we

write i → j

Definition (Communicating)

States i and j are said to be communicating (denoted by i ↔ j) if i → j and
j → i .

It is easy to verify these properties by checking for directed paths in the transition
diagram.

Proposition

I Reflexivity: i ↔ i

I Symmetry: i ↔ j ⇔ j ↔
I Transitivity: i ↔ j , j ↔ k ⇒ i ↔ k

Lecture 2 Transient Behavior and Classification of States
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Classification of States
Communicating Classes

Definition (Communicating Class)

A set C ⊆ S is a communicating class if

1 i ∈ C , j ∈ C ⇒ i ↔ j (any two states in C must communicate)

2 i ∈ C , i ↔ j ⇒ j ∈ C (C is maximal)

1

2

3

4

5

I {1, 2, 3} and {4, 5} are communicating classes.

I {1, 3} is not.

Lecture 2 Transient Behavior and Classification of States
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Classification of States
Communicating Classes

Definition (Closed Communicating Class)

A communicating class is said to be closed if i ∈ C and j /∈ C , then i 9 j .

Think of closed communicating classes as a black hole. Once the DTMC enters
it, it can never leave.

1

2

3

4

5

{1, 2, 3} and {4, 5} are communicating classes but only {1, 2, 3} is closed.

Lecture 2 Transient Behavior and Classification of States
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Classification of States
Irreducibility

The state space S of a DTMC can be partitioned as

S = C1 ∪ C2 ∪ . . . ∪ Ck ∪ C

where C1, . . . ,Ck is the set of closed communicating classes. (k in the
above equation can potentially be ∞.) C is assumed to be the set of
states belonging to communicating classes that are not closed.

Definition (Irreducibility)

A DTMC is said to be irreducible if its state space S is a closed
communicating class. Else it is called reducible.

Lecture 2 Transient Behavior and Classification of States
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Classification of States
Irreducibility

1 2

𝑝 𝑞

1 − 𝑞

1 − 𝑝

Irreducible DTMC

1 2

1 𝑞

1 − 𝑞

Reducible DTMC

For the figure on the left S = C1 = {1, 2}. For that on the right, S = C1 ∪ C =
{1} ∪ {2}.

Is this DTMC irreducible?

2

1/2

1/2

1/21/2

1/2 1/21/2

10 3

1

Note that all properties discussed so far depend only on the signs of the transition

probabilities and not on the magnitudes.
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Classification of States
Recap

I Accessibility

I Communicating

I Communicating Class

I Closed Communicating Class

I Irreducibility

We’ll now look at other ways to classify states that may depend on the

magnitudes of the transition probabilities.

Lecture 2 Transient Behavior and Classification of States
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Classification of States
Recurrence, Transience, and Periodicity

To study this new classification, let’s first define a random variable called
the passage time

T̃i = min{n > 0 : Xn = i}
It represents the time step when the process visits i for the first time
(ignoring the initial state).What is the support of T̃i?

Given a random variable, we are typically interested in its pmf and expected
value. In the context of DTMCs, the following functions are of interest.

1 Probability that the return time is finite

ũi = P
[
T̃i <∞|X0 = i

]
2 Expected return time

m̃i = E
[
T̃i |X0 = i

]
Interpretation

ũi can also be viewed as the probability with which i is revisited and m̃i is
the expected time between consecutive visits.

Lecture 2 Transient Behavior and Classification of States
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Classification of States
Recurrence, Transience, and Periodicity

T̃i = min{n > 0 : Xn = i}
ũi = P

[
T̃i <∞|X0 = i

]
m̃i = E

[
T̃i |X0 = i

]
I What can you say about m̃i if ũi < 1? (ũi < 1⇒ m̃i =∞)

I What can you say about m̃i if ũi = 1? (ũi = 1 ; mi 6=∞)

Definition

A state i is said to be recurrent if ũi = 1. It is transient if ũi < 1.

Definition

A recurrent state i is said positive recurrent if m̃i <∞. It is null
recurrent if m̃i =∞.

Lecture 2 Transient Behavior and Classification of States
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Classification of States
Recap

I Accessibility

I Communicating

I Communicating Class

I Closed Communicating Class

I Irreducibility

Null RecurrentPositive Recurrent

Transient Recurrent

State
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Classification of States
Recurrence, Transience, and Periodicity

Consider the modified-success runs with the following transition probabil-
ities.

2
3/4

1/4

2/3

1/5

1/3

10

1/2

3
1/2

Compute

I P
[
T̃0 = n|X0 = 0

]
, where n ≥ 1

I ũ0 and m̃0

Lecture 2 Transient Behavior and Classification of States
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Classification of States
Recurrence, Transience, and Periodicity

Consider the following Markov chain

2

1/2

1/2

1/21/2

1/2 1/21/2

10 3

1

Which of the following is true for state 0

1 A closed communicating class

2 Transient state

3 Positive recurrent

4 Null recurrent

What about state 1?
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Classification of States
Recurrence, Transience, and Periodicity

Recurrence and transience of states can also be established using the fol-
lowing set of results.

These results will also come in handy when we study the limiting behavior
of DTMCs.

First, recall from the discussion on occupancy times that V
(n)
i is the number

of visits to i over {0, 1, . . . , n}. And the occupancy time of i starting from
i up to time n is

m
(n)
ii = E

[
V

(n)
i |X0 = i

]
,∀ i ∈ S , n ≥ 0

Also, recall that

m
(n)
ii =

n∑
r=0

p
(r)
ii

Lecture 2 Transient Behavior and Classification of States
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Classification of States
Recurrence, Transience, and Periodicity

Theorem

A state i is recurrent ⇔
∞∑
r=0

p
(r)
ii =∞ and is transient ⇔

∞∑
r=0

p
(r)
ii <∞

Proof (sketch).

Define a random variable Vi as the number of visits to i over the infinite
horizon. V

(n)
i → Vi almost surely. Hence, we can write

E
[
Vi |X0 = i

]
= lim

n→∞
E
[
V

(n)
i |X0 = i

]
= lim

n→∞
m

(n)
ii

=
∞∑
r=0

p
(r)
ii

So we need to show that if state i is recurrent ⇔ E
[
Vi |X0 = i

]
=∞ and is

transient E
[
Vi |X0 = i

]
<∞
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Classification of States
Recurrence, Transience, and Periodicity

Proof (sketch).

By definition, E
[
Vi |X0 = i

]
=
∞∑
k=1

kP
[
Vi = k|X0 = i

]
If state i is recurrent, P

[
Vi =∞|X0 = i

]
= 1. Hence,

E
[
Vi |X0 = i

]
=∞

Recall that ũi can also be interpreted as the probability of coming back to i
from i . Hence, if i is transient, P

[
Vi = k|X0 = i

]
= ũk−1

i (1− ũi ). Therefore,

E
[
Vi |X0 = i

]
=
∞∑
k=1

kũk−1
i (1− ũi )

= (1− ũi )
∞∑
k=1

kũk−1
i (arithmetico–geometric series)

= (1− ũi )

[
1

1− ũi
+

ũi
(1− ũi )2

]
= (1− ũi )

−1 <∞

�
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Classification of States
Recurrence, Transience, and Periodicity

Similar conditions can be derived to distinguish between null and positive
recurrent states.

To do so, recall that m̃i is the expected time between consecutive visits.
Hence, 1/m̃i is the number of visits to state i in unit time, which can be
mathematically written as

lim
n→∞

m
(n)
ii

n + 1
= lim

n→∞

1

n + 1

n∑
r=0

p
(r)
ii

Theorem

A recurrent state is

I Positive recurrent ⇔ lim
n→∞

1

n + 1

n∑
r=0

p
(r)
ii > 0

I Null recurrent ⇔ lim
n→∞

1

n + 1

n∑
r=0

p
(r)
ii = 0
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Classification of States
Periodicity

If the period of a state i is d , then its return times are integer multiples of

d . For any d ′ that is not an integer multiple of d , p
(d′)
ii = 0.

What is the period of the states in the simple random walk?

𝑖

𝑝

𝑖 + 1𝑖 − 1

𝑞

𝑝𝑝𝑝

𝑞 𝑞𝑞

Definition

Let i be a recurrent state and d be the largest positive integer such that
∞∑
k=1

P
[
T̃i = kd |X0 = i

]
= 1

I i is aperiodic if d = 1

I i is periodic with period d if d > 1

Note that periodicity does not depend on the magnitude of transition probabili-

ties. Is success runs aperiodic?
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Classification of States
Class Properties

Theorem

If two states i ↔ j , and i is transient (positive recurrent, null recurrent,
periodic), then j is transient (positive recurrent, null recurrent, periodic)

If one state in a communicating/closed communicating class/irreducible
DTMC has one of the above properties, then all the remaining states are
guaranteed to have the same property.

For this reason, these classification are also referred to as class properties.
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Classification of States
Summary

I Accessibility (i → j)
I Communicating (i ↔ j)
I Communicating Class (All states communicate and the set is maximal)
I Closed Communicating Class (‘Blackhole’)
I Irreducibility (The entire DTMC is a ‘blackhole’)

Null RecurrentPositive Recurrent

Transient Recurrent

State 𝑖

෥𝑢𝑖 < 1

෦𝑚𝑖 < ∞ ෦𝑚𝑖 = ∞

σ𝑟=0
∞ 𝑝𝑖𝑖

(𝑟)
< ∞

෥𝑢𝑖 = 1

σ𝑟=0
∞ 𝑝𝑖𝑖

(𝑟)
= ∞

lim
𝑛→∞

1

𝑛+1
σ𝑟=0
𝑛 𝑝𝑖𝑖

𝑟
> 0 lim

𝑛→∞

1

𝑛+1
σ𝑟=0
𝑛 𝑝𝑖𝑖

𝑟
= 0

Aperiodic

Periodic
σ𝑘=1
∞ Ρ ෩𝑇𝑖 = 𝑘𝑑|𝑋0 = 𝑖 = 1

𝑑 = 1

𝑑 > 1
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Your Moment of Zen
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