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Previously on Markov Decision Processes

Consider a policy µ. Suppose we simulate S trajectories and each trajectory is
indexed by s. A trajectory s can be written as

i0, µ(i0), i1, µ(i1), . . . , it , µ(it), . . . , it(s)

where it(s) represents the terminal state of trajectory s. Given this trajectory, we
can compute the sample future cost at every time step t = 0, . . . , t(s) as follows

Gt(s) = g(it , µ(it), it+1) + αg(it+1, µ(it+1), it+2) + . . .

+ αt(s)−1−tg(it(s)−1, µ(it(s)−1), it(s))

Suppose we want to find the approximate value of some state i . Then, we look
at the first occurrence of i in each trajectory and calculate the discounted cost
from that point onward.

This process is repeated for all trajectories and the costs are averaged. This

method is also called First-Visit Monte Carlo Method.
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Previously on Markov Decision Processes

Thus, one can incrementally update the approximate value functions for each
sample trajectory s.

For every it in the trajectory i0, µ(i0), i1, µ(i1), . . . , it(s), update

numVisits(it)← numVisits(it) + 1

J̃µ(it)← J̃µ(it) +
1

numVisits(it)

(
Gt(s)− J̃µ(it)

)
This method can be generalized as

J̃µ(it)← J̃µ(it) + γ
(
Gt(s)− J̃µ(it)

)
Comparing this with gradient descent methods, γ can be interpreted as a step

size and Gt(s) can be thought of a target. One can let γ shrink to zero over time.

This is ideal for scenarios in which the system dynamics are not time-invariant.
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Previously on Markov Decision Processes

Mathematically, the MC update

J̃µ(it)← J̃µ(it) + γ
(
Gt(s)− J̃µ(it)

)
is transformed to

J̃µ(it)← J̃µ(it) + γ
(
g(it , µ(it), it+1) + αJ̃µ(it+1)− J̃µ(it)

)
This method is also called the TD(0) algorithm, and

I g(it , µ(it), it+1) + αJ̃µ(it+1) is called the TD target

I g(it , µ(it), it+1) + αJ̃µ(it+1)− J̃µ(it) is called the TD error
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Previously on Markov Decision Processes

Thus, MC methods attempt to fit the value functions to the sample means
and minimize the mean squared error.

TD methods on the other hand create a Markov chain by discovering
transitions and costs along the lines of maximum-likelihood estimation
and use it estimate approximate value functions.
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Previously on Markov Decision Processes

Suppose for each state i , we extract m features. Let k represent a generic
feature. Then, the vector of approximate value functions can be written
as

J̃ = Φr

where Φ is

Φ =


φ1(1) . . . φm(1)
φ1(2) . . . φm(2)

...
...

...
φ1(n) . . . φm(n)


n×m

r =


r1
r2
...
rm


m×1

The rows of the Φ matrix are features and the columns can be interpreted
as basis functions/vectors.

Thus, we can think of the subspace S = {Φr |r ∈ Rm} as the subspace

spanned by the basis vectors (columns of Φ).
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Previously on Markov Decision Processes

Suppose we have access to the true value function Jµ. In the direct method, the
optimal parameters can be obtained by solving

min
r∈Rm

‖Jµ − Φr‖

Suppose Jµ and r have dimensions 3 × 1 and 2 × 1 respectively. Is r uniquely
determined?

J̃µ =

J̃µ(1)

J̃µ(2)

J̃µ(3)


=

φ1(1) φ2(1)
φ1(2) φ2(2)
φ1(3) φ2(3)

[r1
r2

]

𝐽𝜇

𝑆 = { Φ𝑟 |𝑟 ∈ ℝ𝑠}

ሚ𝐽𝜇
𝜙1 1 , 𝜙1 2 , 𝜙1(3)

𝜙2 1 , 𝜙2 2 , 𝜙2(3)
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Previously on Markov Decision Processes

In the indirect approximation approach, we replace the Bellman equations
Jµ = TµJµ with

Φr = ΠTµ(Φr)

where Π denotes the projection of a point on the subspace S .

𝐽𝜇

𝑆 = { Φ𝑟 |𝑟 ∈ ℝ𝑠}

𝑇𝜇𝑆

Φ𝑟

T𝜇(Φ𝑟)

ΠT𝜇(Φ𝑟)

This approach has connections with the TD(0) method which we will dis-

cuss in detail in the next class.
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Lecture Outline

1 Parametric Methods

2 Policy Improvement
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Lecture Outline

Parametric Methods
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Parametric Methods
Direct Approach

Recall that in the direct approach, we try to find the best r by minimizing
the distance between Jµ and Φr . Mathematically,

r∗ = arg min
r∈Rm

‖Jµ − Φr‖2ξ

where ‖ · ‖ is a weighted Euclidean norm defined as

‖J‖2ξ =
n∑

i=1

ξi (J(i))2

The point Φr∗ is still the projection but with respect to the weighted
Euclidean norm.

What are the optimality conditions of the above minimization problem?
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Parametric Methods
Direct Approach

r∗ = arg min
r∈Rm

n∑
i=1

ξi
(
φ(i)′r − Jµ(i)

)2
The gradient of the objective is

2
n∑

i=1

ξiφ(i)
(
φ(i)′r − Jµ(i)

)
Setting it to zero at r∗,

r∗ =

(
n∑

i=1

ξiφ(i)φ(i)′
)−1 n∑

i=1

ξiφ(i)Jµ(i)

If the columns of Φ are linearly independent, then r∗ can be uniquely identified.
However, there are two issues with the above procedure:

I Jµ is not known.

I The size of the state space n may be extremely large and hence
calculating sums could be intractable.
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Parametric Methods
Monte Carlo Simulations

To address these issues, a Monte Carlo simulation method like the one
discussed in the previous class can be used.

Suppose ξ = (ξ1, ξ2, . . . , ξn) is a probability distribution. Then the sum∑n
i=1 ξiai can be interpreted as the expectation of a random variable whose

support is a1, . . . , an with a pmf ξ.

A simulation-based approach to compute the above expectation is to sam-
ple from a1, . . . , an according to the distribution ξ and form Monte Carlo
averages.

Suppose k = 1, . . . ,K are a set of states (not episodes or state transitions)
sampled according to the distribution ξ, then

n∑
i=1

ξiai ≈
1

K

K∑
k=1

ak
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Parametric Methods
Monte Carlo Simulations

Using a similar logic, instead of finding entire sums in the following expres-
sion,

r∗ =

(
n∑

i=1

ξiφ(i)φ(i)′

)−1 n∑
i=1

ξiφ(i)Jµ(i)

we sample a set of states k = 1, . . . ,K using the distribution ξ and con-
struct an estimate of the optimal solution r̂∗ as follows

r̂∗ =

(
1

K

K∑
i=1

φ(ik)φ(ik)′

)−1
1

K

K∑
i=1

φ(ik)Jµ(ik)

=

(
K∑
i=1

φ(ik)φ(ik)′

)−1 K∑
i=1

φ(ik)Jµ(ik)

Can you reverse engineer the objective that r̂∗ would optimize?
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Parametric Methods
Alternate Interpretation

Another way to look at the problem is that instead of optimizing the original
objective

n∑
i=1

ξi

(
φ(i)′r − Jµ(i)

)2
we optimize its sample approximation

K∑
i=1

1

K

(
φ(ik)′r − Jµ(ik)

)

The above discussion addresses the issue of large state spaces and makes
it easier to calculate sums. But how do we estimate Jµ(ik)? One could
use MC or TD methods for this purpose.
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Parametric Methods
Direct Approach Summary

If we use MC and TD methods to find the approximate value functions, why
do we need parametric methods? In other words, what do we gain from the
parametric methods?

MC and TD methods estimate
the value at each state. In
the parametric approach, the
sampled states i1, . . . , iK could
be a small subset of the entire
state space and we fit a function
based on J̃µ at these states.

Sampled states

Approximate value function 
at sampled states

Best fit parametrized 
Function approximation

𝑖

𝐽 𝜇
𝑖;
𝑟
∗

The r∗ values help in fitting a curve (shape is determined by choice of the basis
functions) through these sampled points and thus provides an approximation of
the value function for all the remaining states.

ξ can be arbitrary chosen but it helps to select the limiting distribution of the

DTMC associated with policy µ. (Why?) In practice, one can simulate trajec-

tories/episodes and use the no. of visits to states as a proxy for ξ.
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Parametric Methods
Indirect Approach

Given a policy µ, the standard way of finding Jµ is by solving the Bellman
equation Jµ = TµJµ. This involves solving n equations with n unknowns.

The other alternative parametric method is the indirect approach in which
instead of fitting functions, we find an alternate equation in the subspace
S = {Φr |r ∈ Rm} which resembles Bellman equations.

Assumptions:

I For the theory to work, we will assume that the DTMC induced by
the policy µ is irreducible and thus has a unique limiting distribution
ξ. We will later see why this is a reasonable assumption to make
when we study policy improvement.

I We will also suppose that the column vectors of Φ are linearly
independent.
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Parametric Methods
Indirect Approach

Let Π be the projection mapping on the subspace S . Recall that by defini-
tion of the projection ΠJ is the closest point in S according to the weighted
norm ‖ · ‖ξ. Mathematically,

ΠJ = arg min
J′∈S
‖J − J ′‖2ξ

Proposition

The mapping Tµ and the composite mapping Π and Tµ are contractions
with respect to the weighted norm ‖ · ‖ξ with a modulus of contraction α

We find the best parameter vector by solving the projected Bellman
equations,

Φr = ΠTµ(Φr)
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Parametric Methods
Indirect Approach

Using the fact that Tµ = gµ + αPµ, and that Φr∗ solves Φr = ΠTµ(Φr),
we can write

r∗ = arg min
r∈Rm

‖Φr − (gµ + αPµΦr∗)‖2ξ

= arg min
r∈Rm

(
Φr − (gµ + αPµΦr∗)

)′
D
(

Φr − (gµ + αPµΦr∗)
)

where D is a n × n diagonal matrix diag(ξ1, . . . , ξn). What are the opti-
mality conditions of the above problem?

Φ′D
(

Φr∗ − (gµ + αPµΦr∗)
)

= 0

Hence, solving the above set of equations gives the optimal r values. How

many equations and unknowns are in the above system? m and m which

is ≪ n.
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Parametric Methods
Matrix Form of Projected Bellman Equations

We will refer to this as the matrix form of the projected equations.

Φ′D
(

Φr∗ − (gµ + αPµΦr∗)
)

= 0

Substituting Aµ for Φ′D(I − αPµ)Φ and bµ for Φ′Dgµ, we can write the
above system compactly as

Aµr
∗ = bµ

Thus, r∗ can be written as A−1µ bµ just like how Jµ was (I − αP−1µ )gµ.
What are the dimensions of Aµ and bµ?

But calculating them requires us to work with D,Pµ and gµ all of which
are large matrices or vectors.
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Parametric Methods
Matrix Form of Projected Bellman Equations

Matrix and vector multiplications are essentially sums and hence instead
of computing these matrices, we can use Monte Carlo simulation as done
earlier.

We will try to find Âµ that approximates

Aµ = Φ′D(I − αPµ)Φ

and vector b̂µ that approximates

bµ = Φ′Dgµ

and then solve r̂∗ = Â−1µ b̂µ. There are three difficult matrix operations in
constructing the above approximations

Φ′DΦ Φ′DPµΦ Φ′Dgµ

Can you write these three matrices as expectation-like sums?
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Parametric Methods
Matrix Form of Projected Bellman Equations

Φ′DΦ =
n∑

i=1

ξiφ(i)φ(i)′

Φ′DPµΦ =
n∑

i=1

n∑
j=1

ξipij(µ(i))φ(i)φ(j)′

Φ′Dgµ =
n∑

i=1

n∑
j=1

ξipij(µ(i))φ(i)′g(i , µ(i), j)

The first equation is the expected values with respect to the pmf ξ and the
second and third can be treated as an expectation using a joint probability
mass function {ξipij(µ(i))|i , j = 1, . . . , n}.

Approximating the first is easy but how do we approximate the second and

third expressions using sampling?
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Parametric Methods
Matrix Form of Projected Bellman Equations

Run a long simulation of the DMTC induced by µ. Suppose the states are
i1, . . . iK . Then, the estimates of the earlier matrices can be expressed as

Φ′DΦ =
n∑

i=1

ξiφ(i)φ(i)′ ≈ 1

K

K∑
t=0

φ(it)φ(it)
′

Φ′DPµΦ =
n∑

i=1

n∑
j=1

ξipij(µ(i))φ(i)φ(j)′ ≈ 1

K

K∑
t=1

φ(it)φ(it+1)′

Φ′Dgµ =
n∑

i=1

n∑
j=1

ξipij(µ(i))φ(i)′g(i , µ(i), j) ≈ 1

K

K∑
t=1

φ(it)g(it , µ(it), it+1)
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Parametric Methods
Matrix Form of Projected Bellman Equations

Substituting these approximations in the expressions for Aµ = Φ′DΦ −
αΦ′DPµΦ and bµ = Φ′Dgµ, we get

Âµ =
1

K

K∑
t=1

φ(it)φ(it)
′ − α 1

K

K∑
t=1

φ(it)φ(it+1)′

=
1

K

K∑
t=1

φ(it)
(
φ(it)− αφ(it+1)

)′
b̂µ =

1

K

K∑
t=1

φ(it)g(it , µ(it), it+1)

Lecture 19 Approximation in Value Space - Part II



25/33

Parametric Methods
Least Squares Temporal Differences (LSTD)

We then solve Âµr̂
∗ = b̂µ exactly or using some iterative method to find

an estimate of the optimal r∗.

This method is also called Least Squares Temporal Differences (LSTD).
To see why, rewrite the above equation as Âµr̂

∗ − b̂µ = 0 and expand it
as

Âµr̂
∗ − b̂µ =

1

K

K∑
t=1

φ(it)
(
φ(it)− αφ(it+1)

)′
r̂∗ − 1

K

K∑
t=1

φ(it)g(it , µ(it)it+1)

=
1

K

K∑
t=1

φ(it)
(
φ(it)r̂

∗ − αφ(it+1)r̂∗ − g(it , µ(it), it+1)
)

The expressions φ(it)r̂
∗ − αφ(it+1)r̂∗ − g(it , µ(it), it+1) resembles the TD

error! The LSTD method is part of a larger class of Galerkin approximation

methods that can be used to solve the projected Bellman equations.
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Lecture Outline

Policy Improvement
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Policy Improvement
Introduction

So far, we have discussed how to approximately evaluate the value function of a
given policy.

Using this approximate Ĵµ, we perform one policy improvement step to get a new
policy µ′ and repeat this procedure. Note that almost all methods involve simu-
lation of the following type and hence we run into the risk of not visiting/rarely
visiting certain states.

numVisits(it)← numVisits(it) + 1

J̃µ(it)← J̃µ(it) +
1

numVisits(it)

(
Gt(s)− J̃µ(it)

)
Thus, the value functions at these states is likely to be very poor because of
which in the policy improvement step, we may never/rarely take actions that
lead us to these states.

This is a cause for concern since we may never be able search over all policies

and may end up reaching very sub-optimal policy. One way to get out of this

cyclic problem is to use randomized policies.
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Policy Improvement
ε-Greedy Exploration

We alter the policy improvement step by

I Assigning a weight of (1-ε) on the optimal action at each state, i.e.,
on u∗ belonging to

arg min
u∈U(i)

{
g(i , u) + α

n∑
j=1

pij(u)J̃µ(j)

}

I Selecting one of the remaining controls randomly with probability ε.

This randomization procedure ensures that the state space is constantly
explored and hence we do not run into the earlier issue.

One can also show that the construction of one ε-greedy policy from an-

other ε-greedy policy preserves the policy improvement property (PIP)!

Lecture 19 Approximation in Value Space - Part II



29/33

Policy Improvement
ε-Greedy Exploration

There are a still a few issues with this procedure:

I If ε is chosen to be very small, how is exploration guaranteed?

I The optimal policy is usually deterministic. So how do we get there
using randomized policies?

I Finding the optimal control requires transition probabilities and
involves calculations over the entire state space.

The first two can be addressed by gradually shrinking ε to zero (say εk =
1/k, where k is the iteration number). This method is called Greedy in
the Limit with Infinite Exploration (GLIE).

The second can be addressed using Q̃µ(i , u) instead of J̃µ(i). The simulation-

based and parametric methods that we discussed so far are applicable to

the Q functions as well.
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Policy Improvement
ε-Greedy Exploration

We can get good estimates of value functions using MC, TD, and para-
metric methods and then improve policies using the above method. This
works well when we have a simulator of the system and adequate time to
learn the optimal policies.

However, if we are operating in an real-time setting, can we update the
policies more frequently without accurately estimating the approximate
value functions? Yes. Think of this as begin analogous to modified policy
iteration.
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Policy Improvement
MC and GLIE

Consider the MC method in which we simulate or observe episodes. For
each episode, we can update the Q values using

numVisits(it , ut)← numVisits(it , ut) + 1

Q̃(it , ut)← Q̃(it , ut) +
1

numVisits(it , ut)

(
Gt(s)− Q̃(it , ut)

)
and then improve the policy using the GLIE approach. In other words, we
do not use a single policy over multiple episodes, but change our policy
after every episode.

For example, imagine you are playing Tetris using one policy and after each
game you use a ‘improved’ policy.
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Policy Improvement
TD(0) and GLIE = SARSA

We can use similar ideas to combine the TD(0) method with the GLIE
policy improvement approach.

Since the TD(0) method updates the value functions after every state
transition, the policy is also updated after every transition!

This method is also called SARSA since each transition can be described
using the letters S, A, R, S, and A. In state S , take an action A and observe
reward R and move to a new state S ′ where you use the GLIE policy to
take a new action A′.

For example, if you use SARSA on a game of Tetris, the policy is updated
as soon as each tetromino lands in the well.
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Your Moment of Zen
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