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For any transition matrix P and fundamental matrix H
P* = PP* = P*P = P*P*
P*H=HP* =0
P*+H=1+ PH
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The gain J,, of a policy u is defined as

Ju = P;gu

The bias hy, of a policy u is defined as
hy = Hugy
where H, = (I — P, + P;;)~" — P}, and is called the fundamental matrix.

In addition, suppose the associated Markov chain is aperiodic, i.e., if P, =
limy— oo P,ﬁ/ (Case Ill), then we can interpret h, as

N
. K
h, = Nl'_>moo ;—0 P,,(gu = Ju)

a relative cost vector, i.e., the difference of the total cost of 1 and the total cost

if one-stage costs were set to J,,. 3/35
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Unlike discounted and total cost MDPs, where we could solve a system of
equations for a given policy (and use this in the policy iteration algorithm),
we cannot simply solve

J="P,J
J+h=g,+P,h

to get the average cost of policy p. (Why?)
If (Ju, hy,) solves the above system, then (J,, h, + constant) also satisfies

the above system. Hence, there are an infinite number of solutions. We
will call these policy evaluation equations for easy referencing.

In general, it can be shown that all solutions to the above system are of
the form (J,, h, + d), where d = P, d.
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The earlier proposition and discussion established that a Blackwell optimal policy
is optimal to the average cost problem.

Further, optimal policies were found to satisfy some equations which are the
necessary conditions for optimality. It can also be shown that they are sufficient.

Proposition

If J/ and h’ satisfy the following pair of optimality equations

J(i) = min Zp,,(u)J(J ., n

ueU(i)

J(i) + h(i) = rngln { ,u)+2p,, u)h(/)} i=1,...,n

where U(i) is the set of controls that attain the minimum in the above
equation. Then, J' = J* is the optimal average cost vector.

Further, if a stationary policy y attains the minimum in the above equations,
then it is the optimal policy 1" .
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In summary, if the average cost is independent of the initial state, the following
proposition is true

Proposition

If a scalar A and a vector h satisfy
)\—i—hi:min{ iyu)+ ,--uh'}Vi:l,...n
()= ip, {86) + 2 )
then X\ is the optimal average cost J*(i) for all i, i.e.,
A=mind,(i)=J"()Vi=1,...,n
n
Further, if u* attains the minimum in the first expression, then J,=(i) = AV i.

In shorthand, the first equation can be rewritten as Ae + h = Th. Think of this

as being analogous to J* = TJ* in the discounted world.
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* _q: 1 k
J* = lim kTh

k—o0

For unichain MDPs,
he = T*h — (T*h)(t)e

where t is some arbitrary state. Effectively, we are shifting the entire function
by a constant. But note that the constant varies across iterations.

Tkh

NNV <

hy (T*h) (e
t i
The iterates h, remain bounded and the bounds do not depend on k. 7/35
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The relative value iteration (RVI) works for unichain MDPs which induce aperi-
odic Markov Chains.

Define the span semi-norm of a vector h as

sp(h) = max h(i) — min h(7)

RELATIVE VALUE ITERATION

Fix a tolerance level ¢ > 0 and select a state t
Select hp € B(X) and k + 0
hy < Tho — (Tho)(t)e
while sp(hxi1 — hi) > € do
k+— k+1
hgr1 < Thy — (Thk)(t)e
end while

Select p such that

) € o iy, {20600+ 3 im0
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Policy Iteration

Linear Programming
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Policy lteration
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Introduction

A policy iteration algorithm that alternates between policy evaluation and
policy improvement can be used to solve the average cost problem.

Policy iteration works for both unichain and multichain MDPs but the
steps for the latter type of problem are more involved.
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Policy Evaluation for Unichain MDPs

Consider a unichain MDP. The MDP associated with any policy thus has
a single closed communicating class and a set of transient states.

Suppose at the kth iteration, we have a policy ux. Then, the policy
evaluation is done by solving the system

)\ke + hk = T,ukhk

Note that for unichain MDPs Ji = P, Ji is always satisfied. However, as
noted earlier, the above system does not have a unique solution.

Hence, we select an arbitrary state t and set hy(t) = 0. It can be shown
that this new system

Axe+ he =T, hy
hk(t) =0

has a unique solution and A, corresponds to the gain of the policy p. 12/35
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Policy Improvement for Unichain MDPs

Note that a hj that satisfies the above set of equations need not equal hy,,
which is why we use the subscript k and not px. (We can however call A4 as

Aug)

Since we know the policy, we could as well compute the gain J,,, = A«e and h,,
and use it in the next step but it would require more computation.

Policy improvement is done by finding the controls which optimize Thy, that is,

Tuk+1 hie = Thy

The new policy pik+1 is the same for any h, that satisfies the policy evaluation
equation. (Why?)

As before,
> The algorithm is terminated when g1 = k.

> Ties are broken such that pt1(i) = k(i) whenever possible.
13/35
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Pseudocode

Povricy ITERATION

IF(’ic<_k gn initial policy uo (say a Greedy policy) and some state ¢
@ Compute A\¢ and hi by solving i.e., > Policy Evaluation
Axe+ he = Ty he
he(t) =0
Compute a new policy p41 that satisfies > Policy Improvement
T he = Thy
k< k+1

while k41 7é 1273
w4 e and J* <+ e

Set pk41(i) = pk(i) whenever possible.
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Example

Perform two iterations of the Pl algorithm for the following example with
two states 1 and 2. Assume that state 1 is the reference state t. Start
with the policy £0(1) = u1 and po(2) = ws.

o

U(2) = {u1, w2}
g(2,u)=1,g(2,u) =3
p2j(u1) = [3/4 1/4]
p2j(u2) = [1/4 3/4]

v
v

U(1) = {u1, w2}
g(l,m)=2,g(1,u2) =05
pij(u1) = [3/4 1/4]
pij(u2) = [1/4 3/4]

v
v

v
v

v
v

15/35

Lecture 16 Pl and LP for Average Cost MDPs



Main Result

Let's now see why the policy iteration method works.

Consider an unichain MDP and a policy p with gain-bias pair (A, hy.).
Suppose ' is obtained from T,/ h, = Th, and denote using (X, h,/) the
gain-bias pair of . If i’ # 1, the one of the following is true

A < A
Aw = Ay and hy (i) < hy(i) for all i = 1,. .., n with equality occurring
for states that are recurrent and strict inequality for at least one transient

state.
We will only prove \,» < \,. To do so, it is enough to show
P (Tuhy — Turhy) = (A — A )e

(Why?) By construction of y, T, h, = Thy, < T, h,. Therefore,
P (T — Turhy) > 0.
16/35
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Main Result

P (Tuhy = Tuhu) = (A = A )e

Consider the LHS:
P;’(Tuhu - Tu’hu) = Pu (Tuhu - (Tu’hu’ + (Tu’hu - Tu’hu’)))
=P <)\“e + hy — ()We + hur + (Turhu — Tu”%’)))
<)\ue + hy — ()We + hy + P (hy — huf))>

= Py (O = Awrde + (1 = Pur) (i = )
=P — Aw)e+ (Phr — PP )(hy — hyr)
=(Au—Aw)e+0
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Policy Evaluation for Multichain MDPs

For multichain MDPs, the same ideas work but both policy evaluation and
improvement involve more equations.

Recall that the gain and bias of a policy satisfy
J="P,J
J+h=g,+ P.h

One cannot solve this system and identify the bias since it is not unique.

Non-uniqueness was an issue even in unichain MDPs, but the choice of
the bias did not matter when we perform policy improvement.

However, that is no longer true for multichain MDPs. At every iteration
k, we need (J,,, h,,) to find an improved policy fix41!
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Policy Evaluation for Multichain MDPs

An obvious option to find (Jy,, hy,) is to estimate Pj;, and the fundamental
matrix H,,. But this is computationally expensive. Alternately, the following
result can be used

Proposition

Consider a stationary policy . with the gain-bias pair (Ju, h.). The set of
solutions (J, h, v) to the following equations

J=P.J
J+h=g.+ Puh
h+v=P,v

are of the form (Jy, h., —H: gy + d) where d satisfies d = P,.d.
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Policy Improvement for Multichain MDPs

Once we have (J,,, hu, ), fuks1 is obtained from the following two-stage policy
improvement procedure:

Step 1:
Choose a policy px+1 which satisfies

P

i e = muln Pudu,

In other words,
pen() € arg o {5 b0 ()
=1

while setting pt1(7) = pi(i) whenever possible. If piy1 # pk, then we can

switch to the policy evaluation procedure. Else, go to Step 2.
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Policy Improvement for Multichain MDPs

Step 2:
Choose a policy pik+1 which satisfies

Puk+1-ll~bk = mJn Py,

Tikss by = min Ty,
nen

where M is the set of policies which attain the minimum in min,, P, J,,. Alter-
nately we can write,

pea(i) € arg min {5 0014, ()
j=1

pea() € arg min {e(i,) + Ym0l ()

j=1
where U(i) is the set of controls are the optima of > o1 Pi(u)du, (7). Again set
tit1(7) = pk (i) whenever possible.

21/35

Lecture 16 Pl and LP for Average Cost MDPs



Main Result

The above policy iteration procedure for multichain MDPs works because

of the following proposition (which is is very similar to what we saw in
unichain MDPs).

Proposition

Let juc be a policy with gain-bias pair (J,, , h,,). Suppose that jui1 is
obtained from policy improvement step and let (J,,,,,, h,,.,) be its
gain-bias pair. If pxi1 # pk then one of the following is true

e (i) < Jp, (i) forall i =1,..., n with a strict inequality for at
least one state i.

Jyeer = Ju and by, < hy,, forall i =1,...,n with strict inequality
for at least one state i transient under fiy1.
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Linear Programming
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Introduction

Both unichain and multichian MDPs can also be solved using linear pro-
gramming.

We will need the following proposition to set up the LPs

Proposition
Let J and h be vectors which satisfy
J<PJ
J+h<T,h

Then, J < J,,. Further, if equality holds in the first two inequalities,
J=J.
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Unichain MDPs

Consider the case of unichain MDPs. The optimality conditions can be

written as

Ae+h=Th=minT,h
“w

Alternately, we can write Ae + h < T, h for all stationary policies p. And
by setting J = Ae, the previous proposition can be used.

Thus, for all functions h and scalars A that satisfy Ae 4+ h < T, h, A < A,
for every stationary policy pu.

Feasible A for LP

/—/Hl* /1#1 /1#2 o

hd »

Further for the optimal policy p*, the optimal average cost A\* satisfies
Ae+ h= T,~h. Thus, \* is the largest A that satisfies Ae +- h < Th.
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Primal Problem

The primal LP for unichain MDPs can thus be written as

max A

st. A+ h(i) < g(i,u) + ipu(u)ho) Vi=1,...,nue Ui
j=1

which in standard form looks like

max A

st. A+ h() = > pi(u)h(j) < gli,u)  Vi=1,...,n,ue U(i)
j=1
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Example

Write the primal LP for the following example with two states 1 and 2.

> U(1) = {u, up} > U(2) = {w, up}

> g(l,u)=2,g(1,u2) =05 > g(2,u)=1,8(2, ) =3
> pj(u) =[3/4 1/4] > poj(u1) = [3/4 1/4]

> pj(w2) =[1/4 3/4] > poj(u2) = [1/4 3/4]
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Dual Problem

Write the dual of the above LP.

» The number of dual variables equal to the number of constraints in
the primal.

» Since the primal constraints are of the < form, the dual variables
must be > 0.

» Since the primal variables are unconstrained, the dual will have
equality constraints. (How many?)
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Dual Problem

Define variables z(i, u) where i € X, u € U(i).

min Z Z g(i,u)z(i,u)

i=1 ueU(i)
s.t. Z z(i,u)—z Z pii(t)z(j,u) =0 Vi=1,...,n
ueU(i) Jj=1 ueU(j)
Z Z z(i,u)=1
i=1 e u(i)
z(i,u) >0 VYue U(i),i=1,....n

If you think of 3, ;) 2(i, u) as a new variable z;, what do the constraints
represent?
29/35
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Constructing Solutions from LPs

The primal problem gives us only the optimal A. The dual solution on the other
hand can be used to construct the optimal policy as well. (How did we do this
for the discounted problem?)

Let z*(i, u) be the optimal dual solution. Define for all /,
U*(i) = {u e U@i)|z"(i,u) > 0}
For average cost MDPs, it is not necessary that the above set is a singleton.

Define a new set
Cc* = {/’ Z z"(i,u) > 0}

ueU(i)

Note that the sets U*(i) and C* are non-empty. (Why?) The following policy
can be shown to be optimal

vy any u e U*(i)ifi e C*
p (i) = N e
anyue U(i)ifi¢ C
It can also be shown that that the set C* is a closed communicating class under

the optimal policy p*. 30/35
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Multichain MDPs

The earlier proposition can also be used to construct a LP for the multichain
MDP. Recall that we now have two sets of feasible constraints J < P, J and
J+h< Tuh

This implies that any pair of vectors (J, h) that satisfies the above system,
J < Ju.

J®

@

. . J H3
Feasible Region

i

Thus, J* is the “largest” vector satisfying the two constraints.
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Primal LP for Multichain MDPs

The primal problem for the multichain MDP can be written as

n
maxz a;iy(i)
i=1

st y(i) < Zpu(u)y(J) Vi=1,...,n,ue U(i)
j=1
y(i)+h(i) < g(iu) + 3 py(u)h()  Vi=1,....nue U
Jj=1

where a is a row vector of strictly positive reals satisfying >, a; = 1.
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Dual LP for Multichian MDPs

Hence, the dual takes the form

mlnz Z i,u)z(i, u)

i=1 ueU(i
s.t. Z i,u) — Z Z pii(u)z(j,u) =0 Vi=1,...,n
ueU(i) Jj=1 ueU(j)
Z(Z(l u) + r(i, u)) ZZr(_/,u)pj, u) = aj Vi=1,...,n
ueU(i) Jj=1 ueU(j)
z(i,u) >0 VYue U(i),i=1,...,n
r(i,u) >0 VYue U(i),i=1,...,n
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Dual LP for Multichian MDPs

As before, the optimal policy is constructed by first supposing

cr = {/’ S (i) > 0}

ueU(i)
using which, we define

‘() = any u such that z*(i,u) > 0if i € C*
pAU= any u such that r*(i,u) > 0if i ¢ C*
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THERE EXISTS SOME OH Y?S. AND UE MusT GRAB YOUR SUORDS,
NUMBER X SUH SOMEWHERE OUT FIND IT... AND STUDENTS! LJE RIDE!
) | THE LIRONG
MATH (LASS?
’A
T FINALLY IN
THE RIGHT ONE.
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