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Previously on Markov Decision Processes

Definition

The gain Jµ of a policy µ is defined as

Jµ = P∗µgµ

Definition

The bias hµ of a policy µ is defined as

hµ = Hµgµ

where Hµ = (I − Pµ + P∗µ)−1 − P∗µ and is called the fundamental matrix.

In addition, suppose the associated Markov chain is aperiodic, i.e., if P∗µ =
limN→∞ PN

µ (Case III), then we can interpret hµ as

hµ = lim
N→∞

N∑
k=0

Pk
µ(gµ − Jµ)

a relative cost vector, i.e., the difference of the total cost of µ and the total cost

if one-stage costs were set to Jµ.
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Previously on Markov Decision Processes

Unlike discounted and total cost MDPs, where we could solve a system of
equations for a given policy (and use this in the policy iteration algorithm),
we cannot simply solve

J = PµJ

J + h = gµ + Pµh

to get the average cost of policy µ. (Why?)

If (Jµ, hµ) solves the above system, then (Jµ, hµ + constant) also satisfies
the above system. Hence, there are an infinite number of solutions. We
will call these policy evaluation equations for easy referencing.

In general, it can be shown that all solutions to the above system are of
the form (Jµ, hµ + d), where d = Pµd .
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Previously on Markov Decision Processes

Theorem (Laurent Series Expansion)

For a given stationary policy µ with transition matrix Pµ and α ∈ (0, 1),

Jα,µ = (1− α)−1Jµ + hµ + O(|1− α|)

where O(|1− α|) is an α-dependent matrix such that limα→1 O(|1− α|) = 0
and Jµ an hµ represent gain and bias of the policy µ respectively.

Hence, we can write

Jµ = (1− α)Jα,µ − (1− α)hµ + O(|1− α|2)

Definition

A stationary policy µ is said to be Blackwell optimal if it is optimal for all
α-discounted problems with α ∈ (ᾱ, 1), where 0 < ᾱ < 1

A Blackwell optimal policy is optimal to the average cost problem when we

restrict our attention to stationary policies.
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Previously on Markov Decision Processes

Proposition

1 All Blackwell optimal policies have the same gain and bias

2 Let (J∗, h∗) be the gain-bias pair of a Blackwell optimal policy, then

J∗(i) = min
u∈U(i)

n∑
j=1

pij(u)J∗(j) ∀ i = 1, . . . , n

Let Ū(i) be the set of controls that attain the minimum in the above
equation.

J∗(i) + h∗(i) = min
u∈Ū(i)

{
g(i , u) +

n∑
j=1

pij(u)h∗(j)

}
∀ i = 1, . . . , n

If µ∗ is Blackwell optimal, it attains the minimum in the RHS of the
above two equations.
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Previously on Markov Decision Processes

The earlier proposition and discussion established that a Blackwell optimal policy
is optimal to the average cost problem.

Further, optimal policies were found to satisfy some equations which are the
necessary conditions for optimality. It can also be shown that they are sufficient.

Proposition

If J ′ and h′ satisfy the following pair of optimality equations

J(i) = min
u∈U(i)

n∑
j=1

pij(u)J(j) ∀ i = 1, . . . , n

J(i) + h(i) = min
u∈Ū(i)

{
g(i , u) +

n∑
j=1

pij(u)h(j)

}
∀ i = 1, . . . , n

where Ū(i) is the set of controls that attain the minimum in the above
equation. Then, J ′ = J∗ is the optimal average cost vector.

Further, if a stationary policy µ attains the minimum in the above equations,
then it is the optimal policy µ∗.
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Previously on Markov Decision Processes

In summary, if the average cost is independent of the initial state, the following
proposition is true

Proposition

If a scalar λ and a vector h satisfy

λ+ h(i) = min
u∈U(i)

{
g(i , u) +

n∑
j=1

pij(u)h(j)

}
∀ i = 1, . . . n

then λ is the optimal average cost J∗(i) for all i , i.e.,

λ = min
µ

Jµ(i) = J∗(i) ∀ i = 1, . . . , n

Further, if µ∗ attains the minimum in the first expression, then Jµ∗(i) = λ ∀ i .

In shorthand, the first equation can be rewritten as λe + h = Th. Think of this

as being analogous to J∗ = TJ∗ in the discounted world.
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Previously on Markov Decision Processes

What if the state space can be divided into C ∪ C, where C is a recurrent
class and C is the set of transient states for every policy?

MDPs which satisfy this property are called Unichain MDPs and the
simplified optimality equations can be used in this case.

MDPs in which at least one policy results in two or more closed communi-
cating classes and a transient class (possibly empty) are called Multichain
MDPs.

The equal costs property does not hold in this case, but it still holds within
each closed communicating class.
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Lecture Outline

1 Value Iteration

2 VI for Unichain MDPs

3 VI for Multichain MDPs
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Lecture Outline

Preliminaries
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Value Iteration
Classification of MDPs Revisited

There are a few more ways to classify MDPs. For instance,

Definition (Communicating MDP)

An MDP is said to be communicating if for every pair of states i and j there
exists some stationary policy µ under which i ↔ j .

Definition (Weakly Communicating MDP)

An MDP is said to be weakly communicating if there exists C ⊆ S such that
i ↔ j ∀ i , j ∈ C under some stationary policy µ and a possibly empty set C ⊂ S
which is transient under every policy

The main difference in these MDPs is that the conditions have to be satisfied
for some stationary policy whereas unichain and multichain definitions hold true
for all policies.

There are subtle differences in results across these different types of MDPs. We
will focus only on unichain and multichain models in this course.

Lecture 15 Value Iteration for Average Cost MDPs



12/31

Value Iteration
Preliminaries

Consider the mapping Th. How can we interpret this function? It is the
optimal cost of the undiscounted 1-stage problem with a terminal cost
function h.

Likewise, T kh is the optimal cost of the undiscounted k-stage problem
with a terminal cost function h.

Hence, one would expect that the average cost problem can be solved by
computing the limit of 1

kT
kh.

This is in fact true. To prove this, we’ll first try to bound T kh.
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Value Iteration
Preliminaries

Proposition

Let J∗ be the optimal average cost and ĥ satisfy J∗ + ĥ = Tĥ. Then for any h,

min
j

{
h(j)−ĥ(j)

}
+kJ∗(i)+ĥ(i) ≤ (T kh)(i) ≤ max

j

{
h(j)−ĥ(j)

}
+kJ∗(i)+ĥ(i)

Proof.

Let’s prove the RHS of the above inequality. Consider a policy µ.

Tµh − Tµĥ = gµ + Pµh − gµ − Pµĥ

= Pµ(h − ĥ)

In a similar manner, we can write

T k
µh − T k

µ ĥ = Pk
µ(h − ĥ)

⇒T k
µh − T k

µ ĥ = Pk
µ(h − ĥ) ≤ max

j

{
h(j)− ĥ(j)

}
e

⇒T kh − T k
µ∗ ĥ ≤ max

j

{
h(j)− ĥ(j)

}
e
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Value Iteration
Preliminaries

Proof.

It is assumed that ĥ satisfies J∗ + ĥ = Tĥ ≤ Tµĥ. Applying Tµ on both sides
and using the monotonicity lemma,

T 2
µĥ ≥ Tµ(J∗ + ĥ)

≥ gµ + Pµ(J∗ + ĥ)

≥ Tµĥ + PµJ
∗

≥ Tµĥ + J∗

≥ J∗ + ĥ + J∗ = 2J∗ + ĥ

Similarly, it can be shown that T k
µ ĥ ≥ kJ∗ + ĥ. Equality occurs only if µ = µ∗,

in which case we can write
T k
µ∗ ĥ = kJ∗ + ĥ

The RHS of the inequality follows. �
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Value Iteration
Preliminaries

Corollary

Given an optimal average cost vector J∗ and ĥ satisfying T ĥ = J∗ + ĥ,
for all k,

T k ĥ = kJ∗ + ĥ

Replace h with ĥ in the previous proposition.
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Value Iteration
Main Result

Theorem

J∗ = lim
k→∞

1

k
T kh

Proof.

From the earlier proposition,

min
j

{
h(j)− ĥ(j)

}
+ kJ∗(i) + ĥ(i) ≤ (T kh)(i)

≤ max
j

{
h(j)− ĥ(j)

}
+ kJ∗(i) + ĥ(i)

The theorem follows from dividing both sides with k and taking limits as
k →∞. �

Note that no assumption on the underlying Markov chains or the type of MDP

were made so far. This method works for any average cost problem.
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Value Iteration
Drawbacks

While this method works for all average cost MDPs, the values of T kh
keep increasing. (Why?)

This poses a computational challenge as some components may diverge to
∞. This issue can be easily addressed for certain types of MDPs.
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Lecture Outline

VI for Unichain MDPs

Lecture 15 Value Iteration for Average Cost MDPs



19/31

VI for Unichain MDPs
Introduction

Consider a unichain MDP. The optimal costs are equal for all starting states.
The earlier discuss implies that the T kh values keep increasing.

𝑖𝑖

𝑇𝑇ℎ 𝑇𝑇2
ℎ

𝑇𝑇𝑘𝑘
ℎ

…

𝑖𝑖 𝑖𝑖

They are also bounded above and below and the bounds are a function of k. We
will try to show that the ‘width’ of the function or the difference between the
max and min values of the function does not grow with k.

From the previous bounds on T kh,

(T kh)(i) ≤ max
i

(T kh)(i) ≤ max
i

{
max

j

{
h(j)− ĥ(j)

}
+ kJ∗(i) + ĥ(i)

}
≤ max

j

{
h(j)− ĥ(j)

}
+ kJ∗(i) + max

i
ĥ(i)
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VI for Unichain MDPs
Introduction

Similarly, one can write

(T kh)(i) ≥ min
i

(T kh)(i) ≥ min
i

{
max

j

{
h(j)− ĥ(j)

}
+ kJ∗(i) + ĥ(i)

}
≥ max

j

{
h(j)− ĥ(j)

}
+ kJ∗(i) + min

i
ĥ(i)

This implies

−(T kh)(i) ≤ −min
i

(T kh)(i) ≤ −max
j

{
h(j)− ĥ(j)

}
− kJ∗(i)−min

i
ĥ(i)

Adding the above inequalities,

0 ≤ max
i

(T kh)(i)−min
i

(T kh)(i) ≤ max
i

ĥ(i)−min
i

ĥ(i)

Thus, the width of T kh is independent of k!
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VI for Unichain MDPs
Relative Value Iteration

We can exploit this result by defining iterates of the form

hk = T kh − (T kh)(t)e

where t is some arbitrary state. Effectively, we are shifting the entire function
by a constant. But note that the constant varies across iterations.

𝑇𝑘ℎ

𝑖𝑡

(𝑇𝑘ℎ) 𝑡 𝑒ℎ𝑘

From our previous discussion, the iterates hk remain bounded and the bounds
do not depend on k.

Lecture 15 Value Iteration for Average Cost MDPs



22/31

VI for Unichain MDPs
Relative Value Iteration

The hk vector can be interpreted as the k-stage optimal cost relative to state t.

The iterates can also be written just using the T operator as

hk+1 = Thk − (Thk)(t)e

If this procedure converges to some h∗, then

h∗ = Th∗ − (Th∗)(t)e ⇒ (Th∗)(t)e + h∗ = Th∗

From the optimality conditions of unichain MDPs, we know that (Th∗)(t) is the
optimal average cost and h∗ is an associated bias vector.

It turns out that convergence is guaranteed only when each policy of the unichain
MDP results in an aperiodic Markov chain.
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VI for Unichain MDPs
Example 1

Consider the situation where there is only one policy µ for which the one-
step costs and transition matrices are

gµ =

[
1
2

]
Pµ

[
0 1
1 0

]
Calculate the sequences of 1

kT
kh and T kh − (T kh)(t)e.

The first sequence converges but the second does not.
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VI for Unichain MDPs
Algorithm

The relative value iteration (RVI) works for unichain MDPs which induce aperi-
odic Markov Chains.

Define the span semi-norm of a vector h as

sp(h) = max
i∈X

h(i)−min
i∈X

h(i)

Relative Value Iteration

Fix a tolerance level ε > 0 and select a state t
Select h0 ∈ B(X ) and k ← 0
h1 ← Th0 − (Th0)(t)e
while sp(hk+1 − hk) > ε do

k ← k + 1
hk+1 ← Thk − (Thk)(t)e

end while

Select µ such that

µ(i) ∈ arg min
u∈U(i)

{
g(i , u) +

n∑
j=1

pij(u)hk(j)

}
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VI for Unichain MDPs
Example 2

Perform three iterations of the RVI algorithm for the following example with two
states 1 and 2. Use state 1 as the reference state t.

1 2

I U(1) = {u1, u2}
I g(1, u1) = 2, g(1, u2) = 0.5

I p1j(u1) = [3/4 1/4]

I p1j(u2) = [1/4 3/4]

I U(2) = {u1, u2}
I g(2, u1) = 1, g(2, u2) = 3

I p2j(u1) = [3/4 1/4]

I p2j(u2) = [1/4 3/4]
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VI for Unichain MDPs
Periodic Markov Chains

When policies of a unichain MDP can induce periodic Markov chains, as
seen earlier, RVI does not converge but will exhibit oscillatory behavior.

There are methods to address this issue which modify the transition matrix

to wipe out the periodic nature.

Lecture 15 Value Iteration for Average Cost MDPs



27/31

Lecture Outline

VI for Multichain MDPs
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VI for Multichain MDPs
Introduction

For the multi-chain case, we still have 1
kT

kh→ J∗, but we cannot find an
equivalent relative value iteration method.

If we find hk = T kh, the rate at which these iterates diverge is a function
of the state i since there are multiple recurrent classes. For the multichain
case, define a residual sequence

rk = hk − kJ∗ = T kh − kJ∗

Consider a vector ĥ that satisfies J∗ + ĥ = Tĥ. From the first proposition
we saw today, T k ĥ = kJ∗ + ĥ.

Thus, rk can be written as ĥ+(T kh−T k ĥ). It turns out that for problems
in which each policy results in an aperiodic DTMC, (T kh−T k ĥ) converges.

Notice that T kh − T k ĥ is the difference of the optimal k-stage problems

with different terminal costs.
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VI for Multichain MDPs
Introduction

Since rk = hk − kJ∗, we can write

hk = kJ∗ + rk

hk+1 = (k + 1)J∗ + rk+1

Subtracting the above equations,

hk+1 − hk = J∗ + (rk+1 − rk)

Since rk converges, (rk+1−rk)→ 0. Thus, we can conclude that hk+1−hk
converges to J∗.
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VI for Multichain MDPs
Main Result

Proposition

Let J∗ be the optimal average cost and assume that the sequence {hk} is
generated from the VI method hk+1 = Thk . If every stationary policy
results in an aperiodic DTMC, then

1 J∗ = limk→∞(hk+1 − hk)

2 The residual sequence {rk} → r∗. J∗ and r∗ satisfy the pair of
optimality equations defined in the last class.
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Your Moment of Zen
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