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Previously on Markov Decision Processes

Let V
(n)
j be the number of visits to j over {0, 1, . . . , n}. Mathematically, occu-

pancy time of j up to time n starting from i is

m
(n)
ij = E

[
V

(n)
j |X0 = i

]
, ∀ i , j ∈ S , n ≥ 0

The matrix of m
(n)
ij values, is represented by

M(n) =
[
m

(n)
ij

]
|S|×|S|

Intuitively, to go from i to j in n steps, we need to transition from i to some
state r in k steps and from r to j in remaining (n − k) steps.

Theorem (Chapman-Kolmogorov Equations)

The n-step transition probabilities satisfy

p
(n)
ij =

∑
r∈S

p
(k)
ir p

(n−k)
rj , ∀ i , j ∈ S , 0 ≤ k ≤ n

Applying the CK equations recursively, P(n) = Pn

Theorem

Let P0 = I . For a fixed n, M(n) =
n∑

r=0

P r
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Previously on Markov Decision Processes

Reducible Irreducible

DTMC

Null RecurrentPositive Recurrent

Transient Recurrent

Aperiodic Periodic

Case V

Case I

Case II

Case III Case IV
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Previously on Markov Decision Processes

Theorem (Case I)

Let {Xn, n ≥ 0} be an transient, irreducible DTMC. Then

lim
n→∞

p
(n)
ij = 0∀ i , j ∈ S

Theorem (Case II)

Let {Xn, n ≥ 0} be an null recurrent, irreducible DTMC. Then

lim
n→∞

p
(n)
ij = 0∀ i , j ∈ S
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Previously on Markov Decision Processes

Theorem (Case III)

Let e be a column vector of ones. For an aperiodic, positive recurrent,
irreducible DTMC, there exists unique πj > 0, j ∈ S such that

lim
n→∞

p
(n)
ij = πj , ∀ i , j ∈ S

πP = π (Balance Equation)

eπ = 1 (Normalizing Equation)

Theorem (Case IV)

Let e be a column vector of ones. For a periodic, positive recurrent,
irreducible DTMC, there exists unique πj > 0, j ∈ S such that

lim
n→∞

m
(n)
ij

n + 1
= πj , ∀ i , j ∈ S

πP = π

eπ = 1
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Previously on Markov Decision Processes

Theorem (Case V)

Let i ∈ T and j ∈ Cr .

1 If Cr is transient or null recurrent d
(n)
ij → 0

2 If Cr is aperiodic and positive recurrent, d
(n)
ij → ui (r)πj , where πjs

are derived from limiting distribution of P(r)(n)

3 If Cr is periodic and positive recurrent, d
(n)
ij does not have a limit.

However
∑n

m=0 d
(m)
ij /(n + 1)→ ui (r)πj , where πjs are derived from

limiting distribution of P(r)(n)
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Previously on Markov Decision Processes

From the examples, we can see that

I lim
n→∞

P(n) doesn’t always exist

I lim
n→∞

M(n)

n + 1
however always exists and equals lim

n→∞
P(n) when the later

exists. (Why is this intuitively true?)

Case lim
n→∞

P(n) lim
n→∞

M(n)

n + 1
Identical Rows Row Sum = 1

I X X X X
II X X X X
III X X X X
IV X X X X
V X X X X
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Lecture Outline

1 Introduction and Motivating Examples

2 Connections With Discounted MDPs
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Lecture Outline

Introduction and Motivating Examples
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Introduction and Motivating Examples
Objective

In situations where the dynamic program does not have an economic in-
terpretation, total discounted cost could be used.

However, this objective can be unbounded without zero-cost terminal
states. In such cases, an alternate objective, the average cost per stage
can be used to find optimal decisions.

This objective is well suited for queuing applications in traffic and commu-

nications.
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Introduction and Motivating Examples
Objective

Consider a problem with state space X . As before, assume that we can
choose actions from the set U(i) when in state i .

The probability of transitioning from i to j when action u is chosen is
pij(u). Consider a policy π = {µ0, µ1, . . .}, where µk(i) ∈ U(i).

Then the average cost per stage starting from x0 is defined as

Jπ(x0) = lim sup
N→∞

1

N + 1
E
{ N−1∑

k=0

g(xk , µk(xk))

}
We’ve switched to non-stationary policies and lim sup to illustrate cases in
which the lim may not exist and stationary policies may not be optimal!
The above lim sup exists when the one-step costs are bounded.

As before, we write gµ and Jµ to represent the one-step costs and the

average cost of using policy µ and Pµ is the one-step transition matrix.
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Introduction and Motivating Examples
Objective

The average cost also presents unique technical challenges that were absent
in the previous MDP objectives:

I The limit of the average cost objective may not exist for all types of
policies.

I The solution methods depend heavily on the underlying stochastic
processes associated with different policies.

Let us look at some of these features with a few examples. For now, we will

assume that the state space can be countably infinite, but we will switch

to finite state spaces later.
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Introduction and Motivating Examples
Example 1

Consider the two-state system in which one can take two actions u1 and u2 in
each state. The rewards and the transition probabilities are shown below:

1 2

𝑢1
𝑢2

𝑢2

𝑢1

I U(1) = {u1, u2}
I g(1, u1) = 2, g(1, u2) = 2

I p1j(u1) = [1 0]

I p1j(u2) = [0 1]

I U(2) = {u1, u2}
I g(2, u1) = −2, g(2, u2) = −2
I p2j(u1) = [1 0]

I p2j(u2) = [0 1]

Consider the non-stationary policy which starting in 1, remains in 1 for one

period, proceeds to 2 and remains there for 3 periods, returns to 1 and remains

there for 32 periods and proceeds to 2 and remains there for 33 periods.
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Introduction and Motivating Examples
Stationary and Randomized Policies

However, if you use any stationary policy, both lim sup and lim inf exist
and are equal. This is true for all stationary policies of an average cost
MDP.

So why not just look at stationary policies and make our life easy? Because,

I No stationary or randomized policy may be optimal

I Randomized polices and non-stationary policies can do better than
stationary policies

I The performance of stationary policies may be far from that of
randomized policies

The following three examples give us reason to believe the above obser-
vations. Assume that, in these examples, we wish to maximize rewards
instead of minimizing costs.
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Introduction and Motivating Examples
Example 2

Suppose the state space is S = {1, 1′, 2, 2′, . . .} and at each state we can
choose u1 and u2. Let the transition diagram associated with these actions
be as shown below.

1

1′

2

2′

3

3′

𝑢2 𝑢2

𝑢1 𝑢1

𝑢2

𝑢1, 𝑢2 𝑢1, 𝑢2 𝑢1, 𝑢2

…

Suppose g(i , u) = 0 ∀ i ∈ {1, 2, . . .}, u ∈ U(i) and g(i , u) = 1− 1/i ∀ i ∈
{1′, 2′, . . .}, u ∈ U(i). What is the average reward of the optimal policy?
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Introduction and Motivating Examples
Example 2

In this example, lim sup exists (equals 1) but it is not attained by any
policy. Every stationary or non-stationary policy has an average reward
strictly less than 1.

Think of this as being equivalent to minimizing a function like e−x .

However, in this example, it is possible to construct stationary policies that
are ε-optimal. That is, Jµε

> 1− ε.
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Introduction and Motivating Examples
Example 3

Suppose the state space is X = {1, 2, . . .} and at each state we can choose
u1 and u2. Let the transition diagram associated with these actions be as
shown below.

1 2 3

𝑢2 𝑢2

𝑢1 𝑢1

𝑢2

…

Suppose g(i , ui ) = 0 ∀ i and g(i , u2) = 1 − 1/i ∀ i ∈ {1, 2, . . .}. What is
the average reward of the optimal policy?
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Introduction and Motivating Examples
Example 3

The average reward of every stationary policy is strictly less than 1.

Consider the non-stationary policy that chooses u2 i consecutive times
when in state i .

The average rewards follows the sequence 0, 0, 1
2 ,

1
2 , 0,

2
3 ,

2
3 ,

2
3 , 0, . . .. The

limit of this sequence is 1. Hence, the average reward of this policy is 1.
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Introduction and Motivating Examples
Example 4

Suppose the state space is S = {1, 1′, 2, 2′, . . .}. Let the transition diagram
associated with these actions be

1

1′

2

2′

3

3′

𝑢2 𝑢2

𝑢1 𝑢1

𝑢2

∞

𝛼1

𝑢2

1 − 𝛼1

𝑢1

𝑢1

𝑢1
𝛼21 − 𝛼2

𝑢2 …

𝛼31 − 𝛼3

𝑢2

𝑢

The result of action u1 is deterministic but taking u2 in a state i can move the
system to i ′ or ∞ with probabilities αi and 1− αi .

Suppose g(i , u) = 0∀ i ∈ {1, 2, . . .} and g(i , u) = 2∀ i ∈ {1′, 2′, . . .} and
g(∞, u) = 0. What is the average reward of the optimal policy?
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Introduction and Motivating Examples
Example 4

Average reward of any stationary policy is 0.

Consider the non-stationary policy that chooses u2 on the nth return to
state 1, chooses u1 n times and then chooses u2.

The average reward of this policy is
∏∞

i=1 αi which can be > 0 for a

particular choice of αs. For example, choose αi as 1 − 1
(i−1)2 or 4i2−1

4i2

(Wallis Product).

The infinite product is 1/2 and 2/π for the above examples respectively

and no stationary policy is ε-optimal.
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Lecture Outline

Connections With Discounted MDPs
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Connections With Discounted MDPs
Gain and Bias

Two useful functions that will help us study the theory of average cost
MDPs are gain and bias.

Let us focus only on stationary deterministic and randomized policies.
Suppose µ is such a policy.

Denote using P∗µ the limit of the average occupancy matrix. Mathemati-
cally,

P∗µ = lim
N→∞

M
(N)
µ

N + 1
= lim

N→∞

1

N + 1

N∑
r=0

P r
µ

The above limit always exists as seen in Lecture 3.
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Connections With Discounted MDPs
Gain and Bias

Now consider the cases where P∗µ is a stochastic matrix (Cases III, IV, V).

Recall from the analysis of total cost MDPs,
∑N−1

k=0 Pk
µgµ represents the

cost accumulated after N stages. (We started with the zero cost vector
and used the Tµ operator.)

Thus, the average cost of policy µ is

Jµ = lim
N→∞

1

N

N−1∑
k=0

Pk
µgµ =

(
lim

N→∞

1

N

N−1∑
k=0

Pk
µ

)
gµ = P∗µgµ

Definition

The gain Jµ of a policy µ is defined as

Jµ = P∗µgµ
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Connections With Discounted MDPs
Gain and Bias

Definition

The bias hµ of a policy µ is defined as

hµ = Hµgµ

where Hµ = (I − Pµ + P∗µ)−1 − P∗µ and is called the fundamental matrix.

In addition, suppose the associated Markov chain is aperiodic, i.e., if P∗µ =

limN→∞ PN
µ (Case III), then we can interpret hµ as

hµ = lim
N→∞

N∑
k=0

Pk
µ(gµ − Jµ)

a relative cost vector, i.e., the difference of the total cost of µ and the

total cost if one-stage costs were set to Jµ.
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Connections With Discounted MDPs
Road Map

It turns out that the average cost can be derived from a series expansion
of the α-discounted cost model.

Let Jα,µ represent the value functions of policy µ in a discounted MDP.
We can write,

Jα,µ =
∞∑
k=0

αkPk
µgµ =

( ∞∑
k=0

αkPk
µ

)
gµ = (I − αPµ)−1gµ

Lecture 13 Infinite Horizon Average Cost MDPs



26/29

Connections With Discounted MDPs
Wishful Thinking

The following set of equations is guesswork that could relate average cost
MDPs and α-discounted MDPs.

Jµ(i) = lim sup
N→∞

1

N
E
{ N−1∑

k=0

g(xk , µ(xk))

}

= lim sup
N→∞

lim
α→1

E
{∑N−1

k=0 α
kg(xk , µ(xk))

}∑N
k=0 α

k

= lim
α→1

lim sup
N→∞

E
{∑N−1

k=0 α
kg(xk , µ(xk))

}∑N
k=0 α

k

= lim
α→1

limN→∞ E
{∑N−1

k=0 α
kg(xk , µ(xk))

}
limN→∞

∑N
k=0 α

k

= lim
α→1

(1− α)Jα,µ(i)
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Connections With Discounted MDPs
Road Map

Theorem

For any transition matrix P and α ∈ (0, 1),

(I − αP)−1 = (1− α)−1P∗ + H + O(|1− α|)

where O(|1− α|) is an α-dependent matrix such that limα→1 O(|1− α|) = 0
and P∗ and H are given by

P∗ = lim
N→∞

1

N

N−1∑
k=0

Pk

H = (I − P + P∗)−1 − P∗
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Connections With Discounted MDPs
Road Map

Recall that Jµ = P∗µgµ and hµ = Hµgµ. Multiplying both sides of the Laurent
series expansion with gµ,

Theorem (Laurent Series Expansion)

For a given stationary policy µ with transition matrix Pµ and α ∈ (0, 1),

Jα,µ = (1− α)−1Jµ + hµ + O(|1− α|)

where O(|1− α|) is an α-dependent matrix such that limα→1 O(|1− α|) = 0
and Jµ an hµ represent gain and bias of the policy µ respectively.

Hence, we can write

Jµ = (1− α)Jα,µ − (1− α)hµ + O(|1− α|2)

Thus, we expect that a policy minimizing Jα,µ for α close to 1 will also minimize

the average cost Jµ!
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Your Moment of Zen
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