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Previously on Markov Decision Processes

Proposition (Policy Improvement Property (PIP))

Let µ and µ′ be stationary policies such that Tµ′Jµ = TJµ. Then,

Jµ′(i) ≤ Jµ(i)∀ i = 1, . . . , n

Furthermore, if µ is not optimal, strict inequality holds for at least one i .
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Previously on Markov Decision Processes

Even when costs are not involved, the notion of discounting may hold water
since it is human nature to place more weight on short-term costs/rewards.
But discounting doesn’t always make sense.
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With a discount factor of say α = 0.5, it is always optimal to cycle one

more time and we’d never reach the destination!
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Previously on Markov Decision Processes

Suppose the graph is represented by G = (N,A), where N is the set of nodes
and A is the set of links/arcs.

Upon arriving at a node i , a traveler observes a information vector θ ∈ Θi drawn
with probability qθ informing him or her of the travel time of each link leaving
node i .
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Thus, the states are tuples (i , θ). Policies are functions µ(i , θ) which tell us

which node to go to next. Note that this is a problem with uncontrollable state

components like Tetris.
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Previously on Markov Decision Processes

We can simplify the problem by defining ex ante value functions (this the value at
a node before we observe the information vector) using Ĵ(i) =

∑
θ∈Θi

qθJ(i , θ)
Thus, one can hypothesize that the value iteration algorithm looks like

Ĵk+1(i) =
∑
θ∈Θi

qθ min
j∈Γ(i)

{
tθij + Ĵk(j)

}
with Ĵk(t) = 0 for all k. The problem is easier to solve because we have a
smaller number of states. Let’s say this algorithm converges. How do we find
the optimal policies from Ĵ∗?

µ∗(i , θ) = arg min
j∈Γ(i)

{
tθij + Ĵ∗(j)

}
Likewise, given a policy µ, we expect the ex ante cost of the policy µ to be a
solution to

Ĵµ(i) =
∑
θ∈Θi

qθ
{
tθi,µ(i,θ) + Ĵµ (µ(i , θ))

}
and Ĵµ(t) = 0.
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Previously on Markov Decision Processes

How do the Markov chains look like when we deal with the ex ante value func-
tions?
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Again, the transition matrices of total cost MDP will be assumed to include only
the green sub-matrix and we evaluate the cost of the policy using (I −Pµ)−1gµ.1 0 0

0 1 0
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Previously on Markov Decision Processes

Let the state space be X = {1, 2, . . . , n, t} where t represents a termination
state. Let as before, pij(u) represent the probability of reaching state j when u
is chosen in state i . We further assume that

I The terminal state is absorbing, i.e., ptt(u) = 1, ∀ u ∈ U(t).

I The terminal state is cost-free, i.e., g(t, u) = 0∀ u ∈ U(t).

A policy µ is proper if i → t for all i = 1, . . . , n in the Markov chain associated
with µ.

Suppose, J0 represents a vector of zeros. What happens when we apply the Tµ
repeatedly? We would accumulate the one-step costs and hence get the total
cost of associated Markov chain.

Jµ = lim
N→∞

N−1∑
k=0

Pk
µgµ

We will soon extend this by proving that we get Jµ by applying Tµ repeatedly

on any initial guess J0.
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Previously on Markov Decision Processes

We make two main assumptions for the analysis of total cost MDPs:

Assumption 1: There exists at least one proper policy

Assumption 2: For all improper policies µ, Jµ(i) is ∞ for at least one i

Since, Jµ = limN→∞
∑N−1

k=0 Pk
µgµ, the second assumption implies that some

component of
∑N−1

k=0 Pk
µgµ diverges to ∞ as N →∞.

For stochastic shortest paths, the above conditions are met if the destination is

reachable from all nodes and the link travel times are positive.
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Lecture Outline

1 Main Results

2 VI, PI, and LP Methods
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Lecture Outline

Main Results
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Main Results
Constant Shift Lemma

Suppose e : X → R denotes the unit function that takes a value 1 for all
i and let r be a positive scalar.

(
T (J − re)

)
(i) = min

u∈U(i)
E
{
g(i , u) +

n∑
j=1

pij(u)(J − re)(j)

}

= min
u∈U(x)

E
{
g(i , u) +

n∑
j=1

pij(u)J(j)− r
n∑

j=1

pij(u)

}
≥
(
TJ
)
(i)− r

Similarly, we can show
(
Tµ(J − re)

)
(i) ≥ (TµJ)(i)− r .
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Main Results
Properties of Proper Policies

Proposition

For a proper policy µ, Jµ satisfies

lim
k→∞

(T k
µJ)(i) = Jµ(i) ∀ i = 1, . . . , n

for every J. Further, Jµ is the unique fixed point of Tµ

Proof.

By definition of Tµ, T k
µJ = Pk

µJ +
k−1∑
m=0

Pm
µ gµ,

Taking limits as k →∞,

lim
k→∞

T k
µJ = lim

k→∞
Pk
µJ + lim

k→∞

k−1∑
m=0

Pm
µ gµ

= 0 + Jµ

Also by definition of Tµ, T k+1
µ J = gµ + PµT

k
µJ. Taking limits as k →∞,

Jµ = TµJµ. Proof of uniqueness is left as an exercise. �
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Main Results
Properties of Proper Policies

Proposition

A policy µ is proper ⇔ J ≥ TµJ for some vector J.

Proof.

(⇒) Set J = Jµ and use the previous proposition.

(⇐) Suppose not. If J ≥ TµJ, using the monotonicity lemma,

J ≥ T k
µJ = Pk

µJ +
k−1∑
m=0

Pm
µ gµ

Since µ is not proper, taking limits as k →∞, at least one component of the
RHS diverges (Assumption 2) but the LHS is J. A contradiction. �

We will now prove results that will allow us to use VI and PI.
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Main Results
Properties of Proper Policies

Proposition (Proper Policy Improvement Property (PPIP))

Let µ be a proper policy with total cost Jµ. Choose µ′ such that Tµ′Jµ = TJµ.
Then µ′ is proper and

Jµ′ ≤ Jµ

Proof.

By definition of T and Tµ,
TJµ ≤ TµJµ

Jµ is a fixed point of Tµ i.e., TµJµ = Jµ. Therefore,

Tµ′Jµ = TJµ ≤ TµJµ = Jµ

Since Jµ ≥ Tµ′Jµ, previous proposition implies µ′ is proper. Since Tµ′

mapping is monotonic,

Jµ ≥ Tµ′Jµ ≥ T 2
µ′Jµ ≥ . . . ≥ Jµ′

�
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Main Results
Properties of Proper Policies

Corollary

T has a unique fixed point

Proof.

Suppose we construct a sequence of policies {µk} using PPIP. Then,

Jµk+1 ≤ TJµk ≤ Jµk

Since the number of policies are finite, for some k ′, µk′+1 = µk′ and thus
TJµk′ = Jµk′ . Therefore, T has a fixed point.

Proof of uniqueness (Exercise). �

Lecture 12 Solutions Methods for Total Cost MDPs



16/25

Main Results
Bellman Equations

Theorem

1 The optimal cost J∗ is the unique solution to J∗ = TJ∗

2 For any vector J, limk→∞(T kJ)(i) = J∗(i) ∀ i = 1, . . . , n

Proof.

The earlier proposition established that T has a unique fixed point, which is
also the cost of a proper policy. Let’s call it Jµ. We will show that Jµ = J∗

and T kJ → J∗.

Let e be a vector of 1’s and r be a positive scalar. Imagine a function Ĵ which
satisfies,

TµĴ = Ĵ − re

A solution to the above equation must be unique and Jµ ≤ Ĵ (Why?). Thus,
we may write

Jµ = TJµ ≤ TĴ ≤ TµĴ = Ĵ − re ≤ Ĵ

⇒Jµ = T kJµ ≤ T k Ĵ ≤ T k−1Ĵ ≤ Ĵ
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Main Results
Bellman Equations

Proof.

Therefore T k Ĵ → J̃, but will it go all the way to Jµ?

𝑖

𝐽(𝑖)

መ𝐽(𝑖)

𝐽𝜇(𝑖)

𝑇 መ𝐽(𝑖)

𝑇2 መ𝐽(𝑖)

Since limk→∞ T k Ĵ = J̃, we can write
TJ̃ as T (limk→∞ T k Ĵ).

T is still a piecewise concave and
continuous function, so we can inter-
change the limit. Hence, TJ̃ = J̃ ⇒
J̃ = Jµ (Why?).

Using this result and constant shift lemma,

Jµ − re = TJµ − re ≤ T (Jµ − re) ≤ TJµ = Jµ

Thus T k(Jµ − re) monotonically increases and is bounded above by Jµ. We
can show as before that it will converge to Jµ.
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Main Results
Bellman Equations

Proof.

In summary, we saw that the functions Ĵ, TĴ, . . . converge to Jµ from above
and Jµ − re, T (Jµ − re), . . . converge to Jµ from below.

From one of the previous inequalities,

Jµ = TJµ ≤ TĴ ≤ TµĴ = Ĵ − re ≤ Ĵ

⇒ Ĵ ≥ Jµ + re. Therefore, given any J, pick an r > 0, such that

Jµ − re ≤ J ≤ Jµ + re ≤ Ĵ

and apply the T mapping recursively and use the sandwich theorem to
conclude

lim
k→∞

T kJ = Jµ

So far, we’ve shown that the limit exists from any guess J and is equal to Jµ,
the fixed point of T . We are yet to show Jµ = J∗.
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Main Results
Bellman Equations

Proof.

Choose any arbitrary vector, say the zero vector J0 and some proper policy µ′.
By definition of T and Tµ′ ,

TJ0 ≤ Tµ′J0

Using monotonicity lemma and taking limits as k →∞,

Jµ ≤ Jµ′

Thus, µ must be optimal and Jµ = J∗ �
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Main Results
Bellman Equations

It is easy to also show that

Theorem

A stationary policy µ is optimal if and only if

TµJ
∗ = TJ∗
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Lecture Outline

VI, PI, and LP Methods
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VI, PI, and LP Methods
Value Iteration

The previous set of results ensure that the value iteration algorithm con-
verges from any initial guess J.

In general, VI converges in the limit. Under special circumstances, it is
possible to guarantee convergence after a finite number of steps. (Think
of deterministic shortest paths.)

Proposition

If the transition diagram associated with the optima policy is acyclic,
then VI will converge to J∗ after at most n iterations when initialized
with J(i) =∞∀ i = 1, . . . , n.

One can also formally prove that asynchronous VI also converges with just

the assumptions made so far.
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VI, PI, and LP Methods
Policy Iteration

As seen earlier, PPIP can be used to develop a PI method. Start with a
proper policy and repeatedly evaluate and improve it till policies obtained
in successive iterations are the same.

Note that unlike the discounted case, we must start with a proper policy
when using PI.

Unfortunately, the PPIP result does not extend to the modified policy

iteration method. This method can result in improper policies even when

we start with a proper policy.
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VI, PI, and LP Methods
Linear Programming

Recall that the LP approach for the discounted case was based on the
observation that:

Among all functions J that satisfy J ≤ TJ, J∗ is the “largest”

This holds true for the total cost problem as well because of the mono-
tonicity of the T mapping. Hence we can find the optimal value functions
using

max
i

n∑
i=1

aiy(i)

s.t. y(i) ≤ g(i , u) +
n∑

j=1

pij(u)y(j) ∀ i = 1, . . . , n, u ∈ U(i)
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Your Moment of Zen
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