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Proposition (Policy Improvement Property (PIP))

Let y1 and i be stationary policies such that T,/ J,, = TJ,. Then,
Ju () < Ju(DVi=1,...,n

Furthermore, if i is not optimal, strict inequality holds for at least one i.
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Even when costs are not involved, the notion of discounting may hold water
since it is human nature to place more weight on short-term costs/rewards.
But discounting doesn't always make sense.

With a discount factor of say a = 0.5, it is always optimal to cycle one
more time and we'd never reach the destination!
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Suppose the graph is represented by G = (N, A), where N is the set of nodes
and A is the set of links/arcs.

Upon arriving at a node /, a traveler observes a information vector § € ©; drawn
with probability g° informing him or her of the travel time of each link leaving
node .

_ 40 .0 .0
0 = (tij, tins tir

Thus, the states are tuples (i,8). Policies are functions pu(i,8) which tell us
which node to go to next. Note that this is a problem with uncontrollable state

components like Tetris.
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We can simplify the problem by defining ex ante value functions (this the value at
a node before we observe the information vector) using J(i) = >, o, q°J(i,0)
Thus, one can hypothesize that the value iteration algorithm looks like

jk+1(i) = Z q9 'min {t,f + jk(J)}
bgco; €0

with JAk(t) = 0 for all k. The problem is easier to solve because we have a
smaller number of states. Let's say this algorithm converges. How do we find
the optimal policies from J*?

*(i,0) = arg min ] + J*(j
w (i, 0) argjrenrl(r;){ i+ (1)}

Likewise, given a policy u, we expect the ex ante cost of the policy i to be a
solution to

3= 3 o { o+ (.00 |

0cO;
and J,(t) = 0.
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How do the Markov chains look like when we deal with the ex ante value func-

tions?
! 4 1 2 3
41 0 0 O
' o p_ 1|0 0 10
1 T 200 0 0 1
3 lo1 09 0 0

Again, the transition matrices of total cost MDP will be assumed to include only
the green sub-matrix and we evaluate the cost of the policy using (/ — P,) 'g,.

—1

100 0 10 1 30
01 0/-]0 01 1 = |29
00 1 09 0 0 0.9(1) + 0.1(1) 28
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Let the state space be X = {1,2,...,n,t} where t represents a termination
state. Let as before, p;j(u) represent the probability of reaching state j when u
is chosen in state i. We further assume that

> The terminal state is absorbing, i.e., pu(u) =1, Vu € U(t).
> The terminal state is cost-free, i.e., g(t,u) =0V u € U(t).

A policy p is proper if i — t for all i = 1,...,n in the Markov chain associated
with .

Suppose, Jy represents a vector of zeros. What happens when we apply the T,
repeatedly? We would accumulate the one-step costs and hence get the total
cost of associated Markov chain.

=i
NI—>moo Z
We will soon extend this by proving that we get J, by applying T, repeatedly

on any initial guess Jo.
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We make two main assumptions for the analysis of total cost MDPs:

Assumption 1: There exists at least one proper policy

Assumption 2: For all improper policies p, Ju (i) is oo for at least one f

Since, J, = Ilm,\,Hoo Zk 1Pkg,“ the second assumption implies that some
component of Ek Pugu diverges to 0o as N — .

For stochastic shortest paths, the above conditions are met if the destination is
reachable from all nodes and the link travel times are positive.
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Main Results
VI, PI, and LP Methods
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Main Results
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Constant Shift Lemma

Suppose e : X — R denotes the unit function that takes a value 1 for all
i and let r be a positive scalar.

(T(J—re))(i) = min ]E{g(i, u) + Zp,-j(u)(J - re)(j)}

ueU(i)

= mip, B0+ a0~ i)
> (T -+

Similarly, we can show (T, (J — re))(i) = (T, J)(i) —r.
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Properties of Proper Policies

For a proper policy 1, J,, satisfies

kli[r;o(T,fJ)(i) =J()Vi=1,...,n

for every J. Further, J,, is the unique fixed point of T,

Proof.

k—1
By definition of T,, ThJ = PiJ+ Y Plg,.,

m=0
Taking limits as kK — oo,

k—1
lim TiJ= lim PiJ+ lim > Plg.
m=0

k— o0
=0+ J,

Also by definition of T, T[j*lJ = Gy I Py T:J. Taking limits as k — oo,

Ju = T,Ju. Proof of uniqueness is left as an exercise. |
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Properties of Proper Policies

A policy p is proper < J > T, J for some vector J.

Proof.
(=) Set J = J, and use the previous proposition.

<) Suppose not. If J > T,J, using the monotonicity lemma,
w g y

k—1
J>TiI=PiJ+> Pl

m=0

Since p is not proper, taking limits as k — oo, at least one component of the
RHS diverges (Assumption 2) but the LHS is J. A contradiction. | |

We will now prove results that will allow us to use VI and PI.
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Properties of Proper Policies

Proposition (Proper Policy Improvement Property (PPIP))

Let pu be a proper policy with total cost J,,. Choose p" such that T, J, = TJ,.
Then ' is proper and

Jpr < Ju

Proof.
By definition of T and T,

T, < Tudy

J,. is a fixed point of T, i.e., T,J, = J,.. Therefore,
Tudp =T < Tudy=Ju

Since J, > T, Ju, previous proposition implies ' is proper. Since T,
mapping is monotonic,

Ju > Ty > Tardy > o> Jy
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Properties of Proper Policies

Corollary

T has a unique fixed point

Suppose we construct a sequence of policies {u} using PPIP. Then,

Jiiin < T < Jy

Since the number of policies are finite, for some k’, pr41 = i and thus
TJyuy = Ju,,- Therefore, T has a fixed point.

Proof of uniqueness (Exercise). | |
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Bellman Equations

The optimal cost J* is the unique solution to J* = TJ*
For any vector J, limk—oo (T*J)(i) = J*(i)Vi=1,...,n

Proof.

The earlier proposition established that T has a unique fixed point, which is
also the cost of a proper policy. Let's call it J,. We will show that J, = J*
and T*J — J*.

Let e be a vector of 1's and r be a positive scalar. Imagine a function J which

satisfies,
Tud=J—re

A solution to the above equation must be unique and J,, < J (Why?). Thus,
we may write

:JA—rngA
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Bellman Equations

Therefore T*J — J, but will it go all the way to J,?

Ja o
T;l()i) Since limi_s00 T*J = J, we can write

J@ @/ " TJas T(limeeo TE).
/\/m(z‘)

T is still a piecewise concave and

continuous function, so we can inl:er—
Ju(®) c~hange the limit. Hence, TJ = J =
_ J = J, (Why?).

L

Using this result and constant shift lemma,
Jy—re=TJ,—re<T(Jp—re) < TJ,=J,

Thus T*(J, — re) monotonically increases and is bounded above by J,. We
can show as before that it will converge to J,.
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Bellman Equations

In summary, we saw that the functions J, TJ, ... converge to Ju from above
and J, —re, T(J, — re),... converge to J,, from below.

From one of the previous inequalities,
L=T)<TI<T,JJ=J-re<]J
=J> Ju + re. Therefore, given any J, pick an r > 0, such that
Ji—re<J<J,+re<]

and apply the T mapping recursively and use the sandwich theorem to
conclude

lim T"J=J,

k—r o0
So far, we've shown that the limit exists from any guess J and is equal to J,,
the fixed point of T. We are yet to show J, = J*.
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Bellman Equations

Choose any arbitrary vector, say the zero vector Jy and some proper policy p'.
By definition of T and T/,
Th<Tuh

Using monotonicity lemma and taking limits as k — oo,
Ju < Jy

Thus, p must be optimal and J, = J* | |
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Bellman Equations

It is easy to also show that

A stationary policy i is optimal if and only if

T, =TJ
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VI, PIl, and LP Methods
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Value lteration

The previous set of results ensure that the value iteration algorithm con-
verges from any initial guess J.

In general, VI converges in the limit. Under special circumstances, it is
possible to guarantee convergence after a finite number of steps. (Think
of deterministic shortest paths.)

Proposition

If the transition diagram associated with the optima policy is acyclic,
then VI will converge to J* after at most n iterations when initialized
with J(i) =ocoVi=1,...,n.

One can also formally prove that asynchronous VI also converges with just
the assumptions made so far.
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Policy Iteration

As seen earlier, PPIP can be used to develop a Pl method. Start with a

proper policy and repeatedly evaluate and improve it till policies obtained
in successive iterations are the same.

Note that unlike the discounted case, we must start with a proper policy
when using PI.

Unfortunately, the PPIP result does not extend to the modified policy
iteration method. This method can result in improper policies even when
we start with a proper policy.
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Linear Programming

Recall that the LP approach for the discounted case was based on the
observation that:

Among all functions J that satisfy J < TJ, J* is the “largest”

This holds true for the total cost problem as well because of the mono-
tonicity of the T mapping. Hence we can find the optimal value functions

using

n
maxz a;iy(i)
1
i=1

sit. y(i) < g(i,u) + Zpu(u)y(J) Vi=1,...,nu€ U(V)

j=t
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