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Previously on Markov Decision Processes

Let {Xn, n ≥ 0} be a DTMC on S = Z+ with transition matrix P and
initial distribution a. For a given n, the marginal distribution of Xn is

a
(n)
j = P

[
Xn = j

]
∀ j ∈ S

=
∑
i∈S

P
[
Xn = j |X0 = i

]
P
[
X0 = i

]
(Law of Total Probability)

=
∑
i∈S

aip
(n)
ij

where p
(n)
ij is the probability of going from i to j in exactly n steps. Define

the n-step transition matrix P(n) as

P(n) =
[
p
(n)
ij

]
|S|×|S|

Hence, to compute the marginal distributions, we need to compute the

n-step transition matrices.
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Previously on Markov Decision Processes

(TJ)(i) = min
u∈U(i)

{
g(i , u) + α

n∑
j=1

pij(u)J(j)

}
∀ i ∈ X

(TµJ)(i) =

{
g(i , µ(i)) + α

n∑
j=1

pij(µ(i))J(j)

}
∀ i ∈ X

Lemma (Monotonicity Lemma)

For any J : X → R and J ′ : X → R such that J ≤ J ′ and a stationary policy µ,

1 T kJ ≤ T kJ ′

2 T k
µJ ≤ T k

µJ
′

Lemma (Constant Shift Lemma)

For every k, and J : X → R and stationary policy µ

1
(
T k(J + re)

)
(i) =

(
T kJ)

)
(i) + αk r

2
(
T k

µ(J + re)
)
(i) =

(
T k

µJ)
)
(i) + αk r
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Previously on Markov Decision Processes

Value Iteration

Fix a tolerance level ε > 0
Select J0 ∈ B(X ) and k ← 0
J1 ← TJ0
while ‖Jk+1 − Jk‖ > ε(1−α)

2α
do

k ← k + 1
Jk+1 ← TJk

end while

Select µε that satisfies TµεJk+1 = TJk+1

In other words, the policy constructed at termination can be written as

µε(i) ∈ arg min
u∈U(i)

E
{
g(i , u) + α

n∑
j=1

pij(u)Jk+1(j)

}
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Previously on Markov Decision Processes

𝐽
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𝐽∗ = 𝑇𝐽∗

𝐽∗ = 𝑇𝐽∗

Figure: Value Iteration
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Previously on Markov Decision Processes

Policy Iteration
Pick an initial policy µ0 (say a Greedy policy)
Set µ1 such that Tµ1Jµ0 = TJµ0 and k ← 0
while µk+1 6= µk do

k ← k + 1
Compute Jµk by solving Jµk = Tµk Jµk , i.e., . Policy Evaluation

Jµk = (I − αPµk )−1gµk

Compute a new policy µk+1 that satisfies . Policy Improvement

Tµk+1Jµk = TJµk

end while
µ∗ ← µk and J∗ ← Jµk

Since the termination criteria in the above algorithm compares policies between
consecutive iterations, breaking ties arbitrarily can slow convergence.

Hence, we set µk+1(i) = µk(i) whenever possible or stop when Jµk = TJµk
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Previously on Markov Decision Processes

𝐽
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Figure: Policy Iteration
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Lecture Outline

1 Linear Programming Review

2 LP Methods

3 Advantages and Disadvantages
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Lecture Outline

Linear Programming Review
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Linear Programming Review
Introduction

Linear programs are a special class of optimization problems in which
the objective and the constraints are linear.

They can be written in the following canonical form

min cT x

s.t. Ax ≤ b

x ≥ 0

where c , x , and b are vectors of dimensions n× 1, n× 1, and m× 1
respectively. A is a m × n matrix.
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Linear Programming Review
Graphical Solutions

Consider the following LP which involves two decision variables:

max 6x1 + 4x2

s.t. x1 + x2 ≤ 6

2x1 + x2 ≤ 9

2x1 + 3x2 ≤ 16

x1 ≥ 0

x2 ≥ 0 2 4 6

5

x1+x2≤6

2x1+x2≤9

2x1+3x2≤16

6x1+4x2=C

Lines of the form 6x1 + 4x2 = C are also called isoprofit or level curves.

The feasible region of LPs is a polyhedron and the optimum occurs at an

extreme/corner point. How many corner points are possible? In general,

we would have at most
(
m+n
n

)
corner solutions.
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Linear Programming Review
Feasible Region

Definition (Hyperplane)

Sets of the form {x ∈ Rn | aT x = b}, where a ∈ Rn, a 6= 0, b ∈ R are called
hyperplanes.

𝒂

𝒂𝑇𝒙 = 𝑏

𝑎

𝑎𝑇𝑥 ≤ 𝑏𝑎𝑇𝑥 ≥ 𝑏

Definition (Halfspace)

Sets of the form {x ∈ Rn | aT x ≤ b}, where a ∈ Rn, a 6= 0, b ∈ R are called
halfspaces.
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Linear Programming Review
Feasible Region

Definition (Polyhedron)

A polyhedron is a set of the form P = {x ∈ Rn |Ax ≤ b} where
A ∈ Rm×n, b ∈ Rm.

𝑨𝟏⋅

𝑃

𝑨𝟐⋅

𝑨𝟒⋅

𝑨𝟑⋅

The feasible region is a convex set
and a point x ∈ X is said to be an ex-
treme point if it cannot be expressed
as a strict convex combination of two
distinct points in X .

Mathematically, x is an extreme point if @ x1, x2 ∈ X with x1 6= x2 and

λ ∈ (0, 1) such that x = λx1 + (1− λ)x2.

Lecture 10 Linear Programming Methods



14/40

Linear Programming Review
Augmented LP

Definition

A collection of vectors a1, a2, . . . , an is linearly independent if∑n
j=1 λjaj = 0 ⇒ λj = 0∀ j

Definition

A basic solution of Ax = b is a solution that only uses linearly
independent columns of A.

In other words, the x values corresponding to all other columns are 0s.

Proposition

Let x ′ ∈ X = {x : Ax = b, x ≥ 0}. Then x ′ is an extreme point of X ⇔
x ′ is a non-negative basic solution of Ax = b.
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Linear Programming Review
Augmented LP

One can write the Ax ≤ b constraints in equality form by adding slack
variables as follows:

[
A | I

] [x
y

]
= b

Thus, the constraints of the LP can be reformulated as A′x ′ = b, x ′ ≥ 0.
A′ has m rows and m + n columns. To get a basic solution, we need to
select m columns, which can be done in

(
m+n
m

)
ways.

For each such choice of m columns, we get a solution x ′ and we check if
it is ≥ 0. Mathematically,

A′ =
[
A′B | A′N

] [x ′B
x ′N

]
= b

and A′Bx
′
B = b and x ′N = 0. The simplex method used to solve LPs

enumerates corner points by moving from one basic solution to another.
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Linear Programming Review
Duality

Given a LP, a closely related formulation called the dual LP can be written
as follows:

Primal LP

min cT x

s.t. Ax ≤ b

x ≥ 0

Dual LP

max bT y

s.t. AT y ≤ c

y ≤ 0

The dual has the following features:

I If the primal is a minimization problem, the dual has a maximization
objective

I The dual has as many variables as the constraints of the primal

I The dual has as many constraints as the number of variables in the
primal

I The dual of the dual is same as the primal LP
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Linear Programming Review
Duality

I The dual variables have neat economic interpretation as shadow
prices and reflect the sensitivity of the objective to the RHS of the
constraints.

I For ≥ constraints, the RHS can be viewed as requirements and
hence increasing them will worsen the objective. On the other hand,
≤ constraints can be interpreted as resource constraints. Increasing
resources will improve the objective. This logic can be used to
determine the sign of the dual variables.

I When there are equality constraints (can be written as ≥ 0 and ≤ 0
constraints), the associated variables in the dual is unconstrained
and vice versa.

Note that in the above discussion, when counting constraints, we consider
only the structural ones and not non-negativity constraints.
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Linear Programming Review
Duality

Table: Quick Reference for Writing the Dual

min problem max problem
ith constraint ≥ ↔ ith variable ≥ 0
ith constraint ≤ ↔ ith variable ≤ 0
ith constraint = ↔ ith variable is unrestricted
jth variable ≥ 0 ↔ jth constraint ≤
jth variable ≤ 0 ↔ jth constraint ≥

jth variable is unrestricted ↔ jth constraint =

Lecture 10 Linear Programming Methods
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Linear Programming Review
Duality

Theorem (Weak Duality Theorem)

If x is feasible to the primal and y is feasible to the dual, then cT x ≥ bT y

Theorem (Strong Duality Theorem)

If the primal and the dual are feasible, then there exists x∗ and y∗ such
that cT x∗ = bT y∗

Thus, one can solve the primal or dual and get the same optimum objective!

Another useful result is the complementary slackness condition according
to which the optimal primal-dual pair satisfies

y∗i (Ai.x
∗ − bi ) = 0 ∀, i = 1, . . . ,m
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Lecture Outline

LP Methods
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LP Methods
Introduction

In addition to VI and PI, one can use linear programming to solve an MDP.

From the monotonicity lemma,

J ≤ TJ ⇒ J ≤ J∗

Also, from the Bellman equations J∗ = TJ∗. Thus, among all functions J
that satisfy J ≤ TJ, J∗ is the “largest”.

J ≤ TJ

⇒ J(i) ≤ g(i , u) + α

n∑
j=1

pij(u)J(j)∀ i = 1, . . . , n, u ∈ U(i)

Thus, if we treat J(i)s as the decision variables, these form a linear set of

constraints. What should the objective be?
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LP Methods
Alternate LP

Since J∗ must be “largest” component wise, we can think of J∗ as the
solution to the linear program,

max
i

n∑
i=1

y(i)

s.t. y(i) ≤ g(i , u) + α

n∑
j=1

pij(u)y(j) ∀ i = 1, . . . , n, u ∈ U(i)

If each state has m actions, the above LP has n variables and mn con-

straints.
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LP Methods
Geometric Interpretation

Note that the new optimization model has a maximization objective but
we are still minimizing the total expected discounted cost.

𝑖

𝐽(𝑖)
𝐽𝜇1(𝑖) 𝐽𝜇2(𝑖)

𝐽𝜇4(𝑖)

𝐽𝜇3(𝑖)

𝐵(𝑋)
𝐽∗ = 𝑇𝐽∗

𝐽 ≤ 𝑇𝐽

The minimization objective we had earlier was across the set of policies

(a finite set when the states and actions are finite). The LP on the other

hand operates in the space of value functions.

Lecture 10 Linear Programming Methods



24/40

LP Methods
Geometric Interpretation

𝑦(1) 

𝑦(2) 

𝑦 1
= 𝑔 1, 𝑢1
+ 𝛼(𝑝11 𝑢1 𝑦 1
+ 𝑝12 𝑢1 𝑦(2)) 

𝑦 1
= 𝑔 1, 𝑢2
+ 𝛼(𝑝11 𝑢2 𝑦 1
+ 𝑝12 𝑢2 𝑦(2)) 

𝑦 2
= 𝑔 2, 𝑢1
+ 𝛼(𝑝21 𝑢1 𝑦 1
+ 𝑝22 𝑢1 𝑦(2)) 

𝑦 2
= 𝑔 2, 𝑢2
+ 𝛼(𝑝21 𝑢2 𝑦 1
+ 𝑝22 𝑢2 𝑦(2)) 

𝐽∗ = 𝐽∗(1), 𝐽∗(2)  
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LP Methods
Example

Formulate the linear program for the following MDP with two states 1 and
2. Let a1 = a2 = 0.5. Assume that the discount factor is 0.9.

1 2

I U(1) = {u1, u2}
I g(1, u1) = 2, g(1, u2) = 0.5

I p1j(u1) = [3/4 1/4]

I p1j(u2) = [1/4 3/4]

I U(2) = {u1, u2}
I g(2, u1) = 1, g(2, u2) = 3

I p2j(u1) = [3/4 1/4]

I p2j(u2) = [1/4 3/4]
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LP Methods
Alternate Formulation

The coefficients of the objective can be augmented by positive scalars
a1, a2, . . . , an (Why?). We will set

∑n
i=1 ai = 1 so that the a’s can be in-

terpreted as the initial distribution over the state space just like in DTMCs.

max
i

n∑
i=1

aiy(i)

s.t. y(i) ≤ g(i , u) + α

n∑
j=1

pij(u)y(j) ∀ i = 1, . . . , n, u ∈ U(i)

which can be rewritten in the canonical form as

max
i

n∑
i=1

aiy(i)

s.t. y(i)− α
n∑

j=1

pij(u)y(j) ≤ g(i , u) ∀ i = 1, . . . , n, u ∈ U(i)

Formulate the dual LP of the above primal.
Lecture 10 Linear Programming Methods
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LP Methods
Dual LP

I The number of dual variables equal to the number of constraints in
the primal.

I Since the primal constraints are of the ≤ form, the dual variables
must be ≥ 0.

I Since the primal variables are unconstrained, the dual will have
equality constraints

Hence, define dual variables z(i , u) where i ∈ X , u ∈ U(i).

min
n∑

i=1

∑
u∈U(i)

g(i , u)z(i , u)

s.t.
∑

u∈U(i)

z(i , u)−
n∑

j=1

∑
u∈U(j)

αpji (u)z(j , u) = ai ∀ i = 1, . . . , n

z(i , u) ≥ 0 ∀ u ∈ U(i), i = 1, . . . , n
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LP Methods
Dual LP

Solving the primal directly gives us J∗. How do we get the optimal policy
from the primal? Use TµJ

∗ = TJ∗. It can be shown that the optimal
policy does not depend on the ‘a’ vector.

How can we get the optimal policy and value functions if we solve the
dual? The variables in the dual z(i , u) require some interpretation.

Notice that if z(i , u) is a feasible solution to the dual LP, then for each
i = 1, . . . , n,

∑
u∈U(i) z(i , u) > 0. (Why?)

From the constraint of the dual LP, for a state i ,

∑
u∈U(i)

z(i , u) = ai +
n∑

j=1

∑
u∈U(j)

αpji (u)z(j , u)

and α and ai are strictly positive. Thus, (
∑

u∈U(i) z(i , u))−1 is well defined.

We will use this observation to define randomized policies.
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LP Methods
Dual LP

Proposition

1 For each randomized policy µ, define zµ(i , u) as

zµ(i , u) =
n∑

j=1

aj

∞∑
k=0

αkPµ

[
xk = i , uk = u|x0 = j

]
Then, zµ(i , u) is a feasible solution to the dual LP

2 Suppose z(i , u) is a dual feasible solution. Then, a randomized stationary
policy µ constructed such that

P
[
µ(i) = u

]
=

z(i , u)∑
u′∈U(i) z(i , u′)

Then zµ(i , u) defined using part (1) equals z(i , u) for all i ∈ X , u ∈ U(i).

Note that the above proposition deals with only dual feasible solutions. We will
get to optimality later.
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LP Methods
Dual LP

Proof of (1).

We need to show
∑

u∈U(i) zµ(i , u)− ai =
∑n

j=1

∑
u∈U(j) αpji (u)zµ(j , u)

n∑
j=1

∑
u∈U(j)

αpji (u)zµ(j , u)

=
n∑

j=1

∑
u∈U(j)

αpji (u)
n∑

l=1

al

∞∑
k=0

αkPµ

[
xk = j , uk = u|x0 = l

]
=

n∑
l=1

al

∞∑
k=0

αk+1
n∑

j=1

∑
u∈U(j)

pji (u)Pµ

[
xk = j , uk = u|x0 = l

]
=

n∑
l=1

al

∞∑
k=0

αk+1
n∑

j=1

∑
u∈U(j)

Pµ

[
xk+1 = i |xk = j , uk = u

]
P
[
xk = j , uk = u|x0 = l

]
=

n∑
l=1

al

∞∑
k=0

αk+1Pµ

[
xk+1 = i |x0 = l

]
=

n∑
l=1

al

∞∑
k=0

αk+1P(k+1)
µ (l , i)
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LP Methods
Dual LP

Proof of (1).

Now consider∑
u∈U(i)

zµ(i , u)− ai

=
∑

u∈U(i)

n∑
l=1

al

∞∑
k=0

αkPµ[xk = i , uk = u|x0 = l ]− ai

=
n∑

l=1

al

∞∑
k=0

αk
∑

u∈U(j)

Pµ[xk = i , uk = u|x0 = l ]− ai

=
n∑

l=1

al

∞∑
k=0

αkPµ[xk = i |x0 = l ]− ai =
n∑

l=1

al

( ∞∑
k=0

αkPk
µ(l , i)− I (l , i)

)

=
n∑

l=1

al

( ∞∑
k=0

αkP(k)
µ (l , i)− α0P(0)

µ (l , i)

)
=

n∑
l=1

al

∞∑
k=0

αk+1P(k+1)
µ (l , i)

�
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LP Methods
Dual LP

Thus, the dual variable z(i , u) can be interpreted as “total discounted
joint probability of the system occupying a state i and choosing action u”
assuming that the initial state distribution is ai .

zµ(i , u) =
n∑

j=1

aj

∞∑
k=0

αkPµ
[
xk = i , uk = u|x0 = j

]
When multiplied by g(i , u) and summed over all state-action pairs, i.e.,∑n

i=1

∑
u∈U(i) g(i , u)z(i , u), we get the total discounted cost (starting with

initial distribution a).

This interpretation applies to any feasible dual solution. In addition, if
we have a basic feasible solution (corner point), the z values have an
interesting property.
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LP Methods
Dual LP

Note that the with the assumption of bounded costs, the dual has a feasible
solution.

Proposition

Let z be a basic feasible solution, then z(i , u) > 0 for exactly one U(i)
for all i = 1, . . . , n

Since the optimal solution is a basic feasible solution, this is true for the
optimal solution too. One can use the complementary slackness condition
to prove this for the optimal solution.

Using the above proposition, given an optimal dual solution z∗, we can
construct a deterministic optimal policy by looking at the actions for which
z(i , u) > 0.
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LP Methods
Example

Formulate the dual linear program for the following MDP with two states
1 and 2. Assume that the discount factor is 0.9. Let a1 = a2 = 0.5.

1 2

I U(1) = {u1, u2}
I g(1, u1) = 2, g(1, u2) = 0.5

I p1j(u1) = [3/4 1/4]

I p1j(u2) = [1/4 3/4]

I U(2) = {u1, u2}
I g(2, u1) = 1, g(2, u2) = 3

I p2j(u1) = [3/4 1/4]

I p2j(u2) = [1/4 3/4]
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Lecture Outline

Advantages and Disadvantages
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Advantages and Disadvantages
Disadvantages

There is both good news and bad news with the LP methods. The
bad news first:

I Generating the simplex tableau takes time

I Structural results such as convexity and monotonicity cannot
be proven
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Advantages and Disadvantages
Advantages

The good news with LPs is that we can

I Use existing LP solvers

I Perform sensitivity analysis

I Add side constraints
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Advantages and Disadvantages
MDPs with Side Constraints

One could have a secondary objective say the cost of choosing a
certain control in a state. For instance:

I You are navigating a drone and your objective is to match a
certain trajectory (one-step costs are the deviations in the
current and target position), but you may have a constraint
on the fuel consumption.

I You might want to reach a particular destination in the
shortest possible time but you may also have an upper bound
on the operating costs/tolls.

Lecture 10 Linear Programming Methods



39/40

Advantages and Disadvantages
MDPs with Side Constraints

Such models can be formulated as

min
n∑

i=1

∑
u∈U(i)

g(i , u)z(i , u)

s.t.
∑

u∈U(i)

z(i , u)−
n∑

j=1

∑
u∈U(j)

αpji (u)z(j , u) = ai ∀ i = 1, . . . , n

n∑
i=1

∑
u∈U(i)

c(i , u)z(i , u) ≤ C

z(i , u) ≥ 0 ∀ u ∈ U(i), i = 1, . . . , n

The optimal policy in these problems is usually randomized!
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Your Moment of Zen
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