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Course Overview
Frequently Asked Questions (FAQs)

What will I learn from this course?

I The primary objective of this course is to study sequential decision
making in a stochastic environment.

I You’ll be exposed to a variety of situations which will help you model
an engineering problem as a Markov Decision Process (MDP).

I The focus of the course will also be to study the tools and
techniques to solve these MDPs.
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Course Overview
Frequently Asked Questions (FAQs)

Is is course useful to my research?

I There are applications of MDPs in several fields. If you think you’ll
deal with situations where repeated choice making and optimization
is involved, it is very likely that this course will be useful.

I We will look a few examples in this class (some from
transportation) which will hopefully illustrate the point.
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Course Overview
Frequently Asked Questions (FAQs)

Are MDPs same as Reinforcement learning?

I Not exactly. MDPs assume that the inputs (system dynamics) are
fully known. Think of it as a kind of an optimization framework
with some uncertainty.

I Reinforcement learning (or unknown MDPs) on the other hand
deals with instances in which the dynamics are inferred while
simultaneously searching for the optimal solution.

I A few lectures in the latter part of the course are dedicated to
introductory reinforcement learning.

I MDPs are also different from multi-stage stochastic optimization
models and we’ll discuss these differences later.

Lecture 1 Introduction
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All the World’s a State
The Big Picture

A key component of an MDP is the concept of a state, which is loosely a
mathematical representation of the system being studied.

What is the state of the following system?

I A bunch of 9 dots

I 5 blue dots, 2 green dots, 2 orange dots

Lecture 1 Introduction
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All the World’s a State
The Big Picture

How about now?

Perhaps a collection of points (x1, y1), . . . , (x9, y9).

State of a system is not necessarily unique. Its definition is context specific

and depends on what actions you can take and what your objective is.

Lecture 1 Introduction
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All the World’s a State
The Big Picture

At a given state, the decision
maker can take an action/control
which takes the system to another
state and the process is repeated
(either for a fixed number of steps
or indefinitely).

Current State New State

Action/Control

Cost/Rewards

Action/Control

Period 𝑡 Period 𝑡 + 1

…

In the process, the decision maker may receive a reward or incur some cost
(which depends on the current state and action).

Before choosing the action, one cannot predict the future state with cer-
tainty. State transitions are usually stochastic and are a function of the
actions.

The end goal is to optimize some function of the sequence of cost/reward.

Lecture 1 Introduction
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All the World’s a State
The Big Picture

Let’s take a tour of some problems that can be modeled using MDPs.

For each of these examples, identify the following components:

I States

I Actions

I Transitions/Dynamics

I Objective and Costs/Reward

Lecture 1 Introduction
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Course Overview
Applications

Queuing
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Course Overview
Applications

Adaptive signal control

Lecture 1 Introduction
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Course Overview
Applications

Dynamic pricing
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Course Overview
Applications

Inventory management
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Course Overview
Applications

Redistribution of bicylce sharing systems

http://tiny.cc/x9qysz
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Course Overview
Applications

Periodic maintenance problems
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Course Overview
Applications

Intelligent elevators

https://www.youtube.com/watch?v=T6gzm_ifzg8

Lecture 1 Introduction

https://www.youtube.com/watch?v=T6gzm_ifzg8


18/52

Course Overview
Applications

Route planning under uncertainty
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Course Overview
Applications

Investment management
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Course Overview
Applications

Disease diagnosis and treatment

Lecture 1 Introduction
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Course Overview
Applications

Autonomous systems
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Course Overview
Applications

Game playing

https://www.youtube.com/watch?v=WXuK6gekU1Y
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Lecture Outline
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Markov Chains
Introduction

Definition

A stochastic process is a collection of random variables {X (τ), τ ∈ T}.

I The support of these random variables is called the state space S .
(Can be discrete or continuous.)

I T usually represents time and can be discrete or continuous.

Definition

A sample path is a realization of the stochastic process {x(τ), τ ∈ T}.

Definition

The set of all sample paths or trajectories of the stochastic process is
called the sample space.

Lecture 1 Introduction
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Markov Chains
Introduction
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Markov Chains
Introduction

Discrete state space or time does not imply that S and T must be subsets
of Z! They must simply be countable.

I For instance, imagine a system of queues at the airport. The state
could be a vector representing the number of individuals in each
queue and yet the state space is countable.

I In many cases, continuous time systems can be modeled as discrete
time processes via a method called uniformization. In this method,
time is re-indexed by tracking events involving state transitions.

We will deal with discrete state and time processes for most part of the

course and denote the stochastic process as {Xn, n ≥ 0}.

Lecture 1 Introduction
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Markov Chains
Discrete-Time Markov Chains

Consider a discrete-time stochastic process {Xn, n ≥ 0} with a countable
state space S = {0, 1, 2, . . .}.

I We will focus on stochastic processes in which the present state
contains all the information required to predict the future.

I In other words, the future is independent of the past, or the current
state is a ‘sufficient statistic’ of the future.

This assumption is also called the Markov property and such stochastic

processes are called Discrete-Time Markov Chains (DMTCs).

Lecture 1 Introduction
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Markov Chains
Discrete-Time Markov Chains

Mathematically,

Definition (Markov Property)

A stochastic process {Xn, n ≥ 0} with a countable state space S is called
a DTMC if ∀ n ≥ 0, i , j ∈ S ,

P
[
Xn+1 = j |Xn = i ,Xn−1,Xn−1, . . . ,X0

]
= P

[
Xn+1 = j |Xn = i

]
Definition (Time Homogeneity)

A DTMC {Xn, n ≥ 0} is said to be time homogeneous if ∀ n ≥ 0, i , j ∈ S ,

P
[
Xn+1 = j |Xn = i

]
= pij

i.e., RHS does not depend on n or pij(n) = pij ∀ n ≥ 0

Lecture 1 Introduction
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Markov Chains
Discrete-Time Markov Chains

The probability with which the system moves from i to j , pij , is called the
transition probability and the matrix of pij values is called the one-step
transition probability matrix.

P =
[
pij
]
|S|×|S|

Note that P can have countably infinite rows and columns.

Definition (Stochastic Matrix)

A square matrix P =
[
pij
]
|S|×|S| is called right stochastic if

1 pij ≥ 0 ∀ i , j ∈ S

2
∑

j∈S pij = 1∀ i ∈ S

Transition matrices of a Markov chain are right stochastic matrices.

Lecture 1 Introduction
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Markov Chains
Discrete-Time Markov Chains

The transition probability matrix can also be visualized as a directed graph
in which the states are nodes and an arc (i , j) exists only if pij > 0.

P =

1 2 3[ ]1 0.1 0.2 0.7
2 0.6 0 0.4
3 0.4 0 0.6

1

2

3

0.1

0.6

0.4

0.7

0.6

0.2

0.4

http://setosa.io/ev/markov-chains/

The P matrix alone doesn’t fully describe a DTMC. We’d also need to
know the initial distribution.

ai = P
[
X0 = i

]
∀ i ∈ S

Let a be row vector of ai ’s. A Markov chain can thus be fully specified

using (S ,P, a).
Lecture 1 Introduction
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Markov Chains
Discrete-Time Markov Chains

One can use the Markov property to estimate joint distributions and mass
functions. For example. suppose a =

[
0.25 0.25 0.25 0.25

]
and

P =

1 2 3 4


1 0.1 0.2 0.3 0.4
2 0.2 0.2 0.3 0.3
3 0.5 0 0.5 0
4 0.6 0.2 0.1 0.1

Compute

I P
[
X3 = 4,X2 = 1,X1 = 3,X0 = 1

]
I P

[
X3 = 4,X2 = 1,X1 = 3

]

Lecture 1 Introduction
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Markov Chains
Example 1: Parking

Consider a single parking spot. Suppose that if it’s occupied in time interval
n, then it will remain occupied in time interval n + 1 with probability q.

Likewise, assume that if the spot is empty at time interval n, it remains
empty in n + 1 with probability p.

0 1

𝑝 𝑞

1 − 𝑞

1 − 𝑝

0 1[ ]
0 p 1− p
1 1− q q

Lecture 1 Introduction
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Markov Chains
Example 1: Parking

Now imagine two spots and parking events that are independent of each
other. Let {Xn, n ≥ 0} be the number of empty spots. The state space is
S = {0, 1, 2}.

The associated transition probability matrix is

0 1 2[ ]0 p2 2p(1− p) (1− p)2

1 p(1− q) pq + (1− p)(1− q) q(1− p)
2 (1− q)2 2q(1− q) q2

Lecture 1 Introduction
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Markov Chains
Example 2: Shuffling

Imagine you want to shuffle a set of playing cards. For simplicity, assume
that you just have 3 ace cards ♣, ♥, and ♠. The state space consists of
6 permutations.

Here is a deterministic shuffling strategy: Take the last card and place it
at the top of the deck. The transition matrix for this method is

♣♥♠ ♣♠♥ ♥♠♣ ♥♣♠ ♠♣♥ ♠♥♣


♣♥♠ 0 0 0 0 1 0
♣♠♥ 0 0 0 1 0 0
♥♠♣ 1 0 0 0 0 0
♥♣♠ 0 0 0 0 0 1
♠♣♥ 0 0 1 0 0 0
♠♥♣ 0 1 0 0 0 0

Is this a good shuffling strategy?

Lecture 1 Introduction
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Markov Chains
Example 2: Shuffling

Instead, suppose that the last card is at the top of the deck or inserted be-
tween the first and second cards with equal probability. The corresponding
transition matrix is

♣♥♠ ♣♠♥ ♥♠♣ ♥♣♠ ♠♣♥ ♠♥♣


♣♥♠ 0 0.5 0 0 0.5 0
♣♠♥ 0.5 0 0 0.5 0 0
♥♠♣ 0.5 0 0 0.5 0 0
♥♣♠ 0 0 0.5 0 0 0.5
♠♣♥ 0 0 0.5 0 0 0.5
♠♥♣ 0 0.5 0 0 0.5 0

Is this a better shuffling strategy?

Lecture 1 Introduction
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Markov Chains
Example 3: PageRank Algorithm

Perhaps the most popular application of Markov chains is Google’s ap-
proach to ranking web pages. Imagine there are N webpages.

Let cij be 1 if page i has a link
pointing to page j and 0 other-
wise. Let ci be the total number
of other pages i links to.

Suppose time step n represents
nth click. Then, a user on page
i will visit page j with probability
cij/ci .

However, if ci = 0, then the user is assumed to choose one of the N pages

with equal probability 1/N.

Lecture 1 Introduction
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Markov Chains
Example 3: PageRank Algorithm

As an example, suppose there are four web pages with connections as
shown in the C matrix.

C =

1 2 3 4


1 0 1 0 1
2 1 0 1 1
3 1 0 0 0
4 0 0 0 0

P =

1 2 3 4


1 0 1/2 0 1/2
2 1/3 0 1/3 1/3
3 1 0 0 0
4 1/4 1/4 1/4 1/4

The average amount of time spent by the Markov chain in each of these

states is used to determine the page ranking. We’ll revisit this example in

greater detail in Lecture 3.

Lecture 1 Introduction
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Markov Chains
Example 4: Chord Progressions

Melodies in music are usually accompanied by groups of notes called
chords. For example, a piece in a major scale would typically use the
following seven chords: I , ii , iii , IV ,V , vi and viio .

One can use the chord progressions to find patterns across eras or com-

posers. For example, the next few slides show the frequencies of chord

transitions for four composers spanning different eras.

∗The data set used is very small but is still informative. Source: http://lib.bsu.edu/

beneficencepress/mathexchange/10-01/index.html

Lecture 1 Introduction
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Markov Chains
Example 4: Chord Progressions

Palestrina (1547-1580)

I ii iii IV V vi viiO



I 0 0.15 0.13 0.28 0.14 0.22 0.08
ii 0.08 0 0.15 0.13 0.28 0.14 0.22
iii 0.22 0.08 0 0.15 0.13 0.28 0.14
IV 0.14 0.22 0.08 0 0.15 0.13 0.28
V 0.28 0.14 0.22 0.08 0 0.15 0.13
vi 0.13 0.28 0.14 0.22 0.08 0 0.15
viiO 0.15 0.13 0.28 0.14 0.22 0.08 0

Bach (1685-1750)

I ii iii IV V vi viiO



I 0 0.15 0.01 0.28 0.41 0.09 0.06
ii 0.01 0 0 0 0.71 0.01 0.25
iii 0.03 0.03 0 0.52 0.06 0.32 0.03
IV 0.22 0.13 0 0 0.39 0.02 0.23
V 0.82 0.01 0 0.07 0 0.09 0
vi 0.15 0.29 0.05 0.11 0.32 0 0.09
viiO 0.91 0 0.01 0.02 0.04 0.03 0

Lecture 1 Introduction
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Markov Chains
Example 4: Chord Progressions

I ii iii IV V vi viiO



I 0 0.13 0 0.15 0.62 0.05 0.05
ii 0.49 0 0.01 0 0.40 0.01 0.09
iii 0.67 0 0 0 0 0.33 0
IV 0.64 0.14 0 0 0.15 0 0.07
V 0.94 0 0 0.01 0 0.04 0.01
vi 0.11 0.51 0 0.14 0.20 0 0.04
viiO 0.82 0 0.01 0.01 0.16 0 0

Mozart (1756-1791)

I ii iii IV V vi viiO



I 0 0.10 0.01 0.13 0.52 0.02 0.22
ii 0.06 0 0.02 0 0.87 0 0.05
iii 0 0 0 0 0.67 0.33 0
IV 0.33 0.03 0.07 0 0.40 0.03 0.13
V 0.56 0.22 0.01 0.04 0 0.07 0.11
vi 0.06 0.44 0 0.06 0.11 0 0.33
viiO 0.80 0 0 0.03 0.17 0 0

Beethoven (1770-1827)

Lecture 1 Introduction



41/52

Markov Chains
Example 5: Random Walk

Let {Zn, n ≥ 1} be a sequence of iid random variables with pmf

αk = P
[
Zn = k

]
, k ∈ Z

Define a stochastic process {Xn, n ≥ 0} as follows:

X0 = 0,Xn =
n∑

k=1

Zk , n ≥ 1

The above process is a DTMC with transition probabilities pij =
αj−i , ∀ i , j ∈ S (Why?) and is called a random walk.

Lecture 1 Introduction
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Markov Chains
Example 5: Random Walk

Most common variant of the random walk allows steps of size 0, 1, and −1
on a 1D lattice.

State-Dependent Random Walk:

𝑖

𝑝𝑖

𝑖 + 1𝑖 − 1

𝑞𝑖

𝑟𝑖

Simple Random Walk:

𝑖

𝑝

𝑖 + 1𝑖 − 1

𝑞

𝑝𝑝𝑝

𝑞 𝑞𝑞

Lecture 1 Introduction
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Markov Chains
Example 5: Random Walk

Consider the following symmetric simple random walk. Is probability of
returning to 0 equal to 1?

𝑖 𝑖 + 1𝑖 − 1

1/2

1/2

1/2 1/2 1/2

1/2 1/2 1/2

How about the 2D and 3D version?

Lecture 1 Introduction
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Markov Chains
Example 6: Gambler’s Ruin

Imagine two gamblers A and B who have |N. Assume that they repeatedly
toss a coin and if it turns heads (whose probability is p), A wins a rupee
from B and if it is tails (whose probability is q), A gives B a rupee.

2

𝑝

𝑞

𝑝𝑝

𝑞 𝑞𝑞

10 𝑁 − 1 𝑁

𝑝

…

1 1

This is also called as simple random walk with absorbing barriers.

What is the probability of being broke (i.e., reaching state 0)? What if the

second person had infinite amount?

Lecture 1 Introduction
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Markov Chains
Example 7: Success Runs

Suppose a coin is tossed repeatedly and the probability of seeing heads
and tails is p and q. Assume a player wins |1 every time it is heads and
looses their entire winnings if it is tails.

Let Xn represent the player’s cash after n tosses. The DTMC can be
represented using the following transition diagram.

2
𝑝

𝑞

𝑝

𝑞

𝑞

10

𝑞

3
𝑝

Lecture 1 Introduction
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Markov Chains
Example 7: Inventory Modeling

Consider a Tesla manufacturing plant which produces one car each day.
Demand for cars, however, can occur in batches. Let {Yn, n ≥ 1} be the
sequence of iid demands on different days with a pmf

αk = P
[
Yn = k

]
, k ∈ Z+

Let Xn represent the number of cars in the warehouse after the demand for
a particular day is met. Assuming no back orders and that the production
occurs before sales,

I Show that the Markov property holds.

I Construct the transition probability matrix.

Lecture 1 Introduction
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Markov Chains
Example 7: Inventory Modeling

Suppose Xn = i . Then for 0 < j ≤ i+1, P
[
Xn+1 = j |Xn = i ,Xn−1, . . . ,X0

]
= P

[
max{Xn + 1− Yn+1, 0} = j |Xn = i ,Xn−1, . . . ,X0

]
= P

[
Xn + 1− Yn+1 = j |Xn = i ,Xn−1, . . . ,X0

]
= αi−j+1

If j = 0, P
[
Xn+1 = 0|Xn = i ,Xn−1, . . . ,X0

]
= P

[
max{Xn + 1− Yn+1, 0} = 0|Xn = i ,Xn−1, . . . ,X0

]
= P

[
Yn+1 ≥ i + 1|Xn = i ,Xn−1, . . . ,X0

]
=

∞∑
k=i+1

αk = βi

Lecture 1 Introduction
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Markov Chains
Example 7: Inventory Modeling

The transition probability matrix can thus be written as

0 1 2 3 4 . . .


0 β0 α0 0 0 0 . . .
1 β1 α1 α0 0 0 . . .
2 β2 α2 α1 α0 0 . . .
3 β3 α3 α2 α1 α0 . . .
...

...
...

...
...

...
...

Matrices with such structure are also called lower Hessenberg matrices.

Lecture 1 Introduction
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Markov Chains
Higher-Order Markov Chains

In some scenarios, Markov property may not hold. For example, say a
stochastic process {Xn, n ≥ 0} satisfies

P
[
Xn+1 = k |Xn = j ,Xn−1 = i ,Xn−1, . . . ,X0

]
= P

[
Xn+1 = k |Xn = j ,Xn−1 = i

]
In other words, the future depends on the current state as well as the
previous state.

Such a process is called second-order DTMC. It is easy to model this as a

regular DTMC. (How?) Simply define Zn = (Xn−1,Xn). Then {Zn, n ≥ 1}
is a DTMC on S × S .

Lecture 1 Introduction
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Markov Chains
Objectives

There are two main goals in studying stochastic processes:

I Transient Behavior
Here, we are interested in a snapshot or the distribution of Xn.
We’ll also look at occupancy times, which is the expected amount
of time spent in various states up to n.

I Limiting Behavior
We’ll then look at the process in the long run. Do the sequence of
random variables converge (in distribution)? Is the limit unique and
how does one compute it?

Understanding these aspects will let us address several practical questions
specific to the problem of interest.

This analysis will also help develop intuition and background for studying
MDPs.

Lecture 1 Introduction
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Coming Soon

The rest of the course will be grouped into the following parts:

1 Stochastic Processes and Finite Horizon MDPs:
DTMCs, classification of DTMCs, transient and limiting behavior, finite
horizon MDPs, backward induction, structural results, and applications.

2 Infinite Horizon Discounted MDPs:
Banach spaces and contraction mappings, value iteration, policy iteration,
linear programming methods, and applications.

3 Infinite Horizon Total and Average Cost MDPs:
Existence of optimal policies, solution methods (value iteration and policy
iteration), unichain and multichain models, and applications.

4 Approximate Dynamic Programming and RL:
Roll-out methods, lookahead and Monte-Carlo Tree Search, model-free
methods, function approximation, and policy gradient.

5 Additional topics:

Dynamic discrete choice models, risk-sensitive MDPs, partially observable

MDPs (POMDP), continuous-time models.

Lecture 1 Introduction



52/52

Your Moment of Zen

Lecture 1 Introduction


