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Previously on Traffic Network Equilibrium...

Theorem

x∗ satisfies the VI, t(x∗)T (x− x∗) ≥ 0 ∀ x ∈ X ⇔ it satisfies the Wardrop
principle
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Previously on Traffic Network Equilibrium...

The User Equilibrium (UE) formulation in terms of the path flows ys is

given by

min
∑

(i ,j)∈A

∫ ∑
p∈P δ

p
ijyp

0
tij(ω) dω

s.t.
∑
p∈Prs

yp = drs ∀ (r , s) ∈ Z 2

yp ≥ 0 ∀ p ∈ P
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Previously on Traffic Network Equilibrium...

From the KKT conditions, eliminating λp, for all (r , s) ∈ Z 2, p ∈ Prs ,

∑
(i,j)∈A

δpij tij(xij) ≥ µrs

yp

 ∑
(i,j)∈A

δpij tij(xij)− µrs

 = 0

From the above equations, µrs is the length of the shortest path.

If yp > 0, then path p must be shortest. If yp = 0, the travel time of path

p must be at least µrs . Voila! Wardrop Principle.
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Previously on Traffic Network Equilibrium...

Rewriting the earlier formulation purely in terms of the link flow variables,
i.e., the decision variables are the xs.

min
∑

(i,j)∈A

∫ xij

0

tij(ω) dω

s.t.
∑

j :(i,j)∈A

x rsij −
∑

h:(h,i)∈A

x rshi =


dis if i = r

−dri if i = s

0 otherwise

∀ (r , s) ∈ Z 2

xij =
∑

(r ,s)∈Z 2

x rsij ∀ (i , j) ∈ A

x rsij ≥ 0 ∀ (i , j) ∈ A, (r , s) ∈ Z 2

This optimization program, also called the Beckmann formulation, has

fewer variables and is easier to solve.
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Previously on Traffic Network Equilibrium...

The objective is again convex in the aggregate link flows if the delay func-
tions are non-decreasing. (Why?)

min
∑

(i,j)∈A

∫ xij

0

tij(ω) dω

In addition, if we assume that the delay functions are strictly increasing,
the objective is strictly convex. (Why?)

Thus, for strictly increasing delay functions, the equilibrium aggre-

gate link flows are unique but the path flows need not be.
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Lecture Outline

1 System Optimum

2 Price of Anarchy

3 Congestion Pricing
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Lecture Outline

System Optimum
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System Optimum
Introduction

The User Equilibrium (UE) state is realized when travelers behave selfishly.
We saw an example in which this is not optimal for the overall network.

O D

10

𝑥𝑥

10 10

The TSTT for the UE flows is 100 but it is possible to split travelers evenly

and reduce it to 75.
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System Optimum
Introduction

The Braess network also exhibits a similar property.

1

2

3

46 6

50 + 𝑥𝑥

50 + 𝑥𝑥10𝑥𝑥

10𝑥𝑥

10 + 𝑥𝑥

The UE solution has 2 travelers on each of the three routes with a TSTT

of 6(92) = 552. However, if we route 3 travelers each along 1-2-4 and

1-3-4, the TSTT is 6(83) = 498.
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System Optimum
Introduction

Uncoordinated routing can be detrimental since it results in more conges-
tion, fuel usage, and pollution.

On the other hand, flows that minimize TSTT are called system optimum
(SO) or social optimum but they are not self-enforcing since someone might
have an incentive to deviate.

They can be achieved if the routing decisions are made by a centralized

mechanism. But can this happen? (Are there any other options?)
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System Optimum
Formulation

The SO problem can also be formulated as an optimization program. The
flow conservation constraints remain the same as before.

min
∑

(i,j)∈A

xij tij(xij)

s.t.
∑
p∈Prs

yp = drs ∀ (r , s) ∈ Z 2

xij =
∑
p∈P

δpijyp ∀ (i , j) ∈ A

yp ≥ 0 ∀ p ∈ P
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System Optimum
Uniqueness

Is the objective
∑

(i ,j)∈A xij tij(xij) convex? Strictly convex?

Lecture 7 System Optimum, Price of Anarchy, and Congestion Pricing



14/40

Lecture Outline

Price of Anarchy
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Price of Anarchy
Introduction

In the two-link network, the TSTT improved to 75 from 100, i.e., the UE
solution is 33.34% worse than that of the SO solution.

In the case of the Braess network we noticed an improvement from 552 to
498, i.e., the UE solution is 10.84% worse than the SO.

How bad is selfish routing?
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Price of Anarchy
Introduction

The difference in TSTT appears to depend on

1 Demand

2 Network topology

3 Delay functions

Can we find a worst case scenario? In other words, can we bound the
inefficiency due to selfish routing and claim that the TSTT of the UE
flows is at most x% worse than the TSTT of the SO solution?
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Price of Anarchy
Introduction

Tim Roughgarden addressed this question in 2004 in his seminal
dissertation Selfish routing and the price of anarchy [PDF].
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Price of Anarchy
Results

The Price of Anarchy (PoA) for the traffic assignment problem is defined
as

PoA =
TSTTUE

TSTTSO

Proposition

For linear, non-negative, and non-decreasing delay functions, the PoA is
at most 4/3

Notice that with mild assumptions on the delay functions, we are guaran-

teed that the UE solution cannot be worse than the SO flows by 33.34%

irrespective of the network topology and demand!

Lecture 7 System Optimum, Price of Anarchy, and Congestion Pricing



19/40

Price of Anarchy
Results

Roughgarden found similar bounds for other types of polynomial delay
functions.

Description Representative PoA bound
Linear ax + b 4

3 ≈ 1.333

Quadratic ax2 + bx + c 3
√
3

3
√
3−2 ≈ 1.626

Cubic ax3 + bx2 + cx + d 4 3√4
4 3√4−3

≈ 1.896

Degree ≤ p
∑p

i=0 aix
i (p+1) p

√
p+1

(p+1) p
√
p+1−p = Θ( p

ln p )

It was also shown that the worst case PoA occurs in the two-link network

shown earlier for all the above types of delay functions.
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Price of Anarchy
Linear Delay Functions

We will use a VI approach to prove the PoA result for linear delay functions. A
second (longer) method can be found in Roughgarden’s dissertation.

Proposition

For linear, non-negative, and non-decreasing delay functions, the PoA is at
most 4/3

Proof.

From the VI definition of UE,

t(xUE )T (x− xUE ) ≥ 0 ∀ x ∈ X

Therefore, for any feasible x,

TSTTUE ≤ t(xUE )Tx

= t(xUE )Tx + t(x)Tx− t(x)Tx

= [t(xUE )− t(x)]Tx + t(x)Tx
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Price of Anarchy
Linear Delay Functions

Proof.

Let the delay functions be tij(xij) = aijxij + bij . Consider the expression
[t(xUE )− t(x)]Tx. For any feasible x,

[t(xUE )− t(x)]Tx =
∑

(i,j)∈A

(
xij tij(x

UE
ij )− xij tij(xij)

)
=
∑

(i,j)∈A

xij(aijx
UE
ij + bij)−

∑
(i,j)∈A

xij(aijxij + bij)

Notice that xijx
UE
ij ≤ x2

ij +
(xUEij )2

4
(Why?). Hence,

[t(xUE )− t(x)]Tx ≤ 1

4

∑
(i,j)∈A

xUE
ij (aijx

UE
ij )

≤ 1

4

∑
(i,j)∈A

xUE
ij (aijx

UE
ij + bij) =

1

4
TSTTUE
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Price of Anarchy
Linear Delay Functions

Proof.

TSTTUE ≤ [t(xUE )− t(x)]Tx + t(x)Tx

≤ 1

4
TSTTUE + t(x)Tx

Since the above expression is true for all feasible x, it holds for xSO . Therefore,

TSTTUE ≤
1

4
TSTTUE + TSTTSO

⇒ TSTTUE

TSTTSO
≤ 4

3

�
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Price of Anarchy
Linear Delay Functions

One can also use a graphical approach to prove

[t(xUE )− t(x)]Tx ≤ 1

4
TSTTUE

As seen earlier, the above inequality holds component-wise, i.e.,

xij tij(x
UE
ij )− xij tij(xij) ≤

1

4
xUE
ij tij(x

UE
ij )

𝐴 𝐵 𝐶

𝐷

𝐸 𝐹

𝐺
𝐻 𝐼

𝑥𝑖𝑗
𝑈𝐸𝑥𝑖𝑗

𝑡𝑖𝑗(𝑥𝑖𝑗
𝑈𝐸)

𝑡𝑖𝑗(𝑥𝑖𝑗)

Case I: xij ≥ xUE
ij

Trivial.

Case II:xij < xUE
ij

Area of EFHG ≤ 1
2

Area of DIG

Area of DIG ≤ 1
2

Area of ACIG
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Lecture Outline

Congestion Pricing
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Congestion Pricing
Marginal Costs

The UE and SO problems have the same constraints but differ in the
objectives.

UE Objective: ∑
(i,j)∈A

∫ xij

0

tij(ω) dω

SO Objective: ∑
(i,j)∈A

xij tij(xij)

Is there a way to get one from the other using some transformation?
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Congestion Pricing
Marginal Costs

Replacing the delay functions with t̂ij(x) = tij(x) + x t ′ij(x) and solving the
UE problem gives us the SO solution!

∑
(i,j)∈A

∫ xij

0

tij(ω) + ω t ′ij(ω) dω =
∑

(i,j)∈A

∫ xij

0

d(ω tij(ω))

=
∑

(i,j)∈A

xij tij(xij)

1

2

3

46 6

50 + 𝑥

50 + 𝑥10𝑥

10𝑥

10 + 𝑥 1

2

3

46 6

50 + 2𝑥

50 + 2𝑥20𝑥

20𝑥

10 + 2𝑥
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Congestion Pricing
Marginal Costs

The function t̂ij(x) = tij(x) + x t ′ij(x) is called the marginal cost function.
It consists of

I The original delay function tij(x)

I The externality caused by an additional traveler xt ′ij(x)

Externalities are costs/benefits incurred due to one’s actions by all the
other agents in the system.

In the context of traffic, when an additional traveler takes link (i , j) he or
she increases the travel time by t ′ij(x). This imposes a negative externality
of xt ′ij(x) on all users on (i , j).

Proposition (System Optimal)

At an SO state, all used routes have equal and minimal marginal costs.
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Congestion Pricing
Marginal Costs

Thus, by setting tolls that equal the congestion externalities imposed by
a traveler one can achieve a SO solution! In other words, solve the SO
problem and set a toll of xSOij t ′ij(x

SO
ij ) on each link.

When a network has tolls, we will assume that travelers minimize gener-
alized cost of travel = γ (travel time) + toll.

γ is the value of time (VoT) measured in |/min. For now, assume that all

travelers have the same VoT of 1.
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Congestion Pricing
Marginal Costs

The idea of externalities and tolls is very old. It was first discussed by

Arthur Pigou in his classic book The Economics of Welfare in 1920 (over

a 100 years ago!)
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Congestion Pricing
Example

What is the UE solution in the following network with tolls?

1

2

3

46 6

50 + 𝑥

50 + 𝑥10𝑥

10𝑥

10 + 𝑥

30

0

3 30

3
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Congestion Pricing
Minimum Revenue Tolls

First-best tolls for achieving SO flows are not unique. Hence, one can seek
tolls that satisfy some secondary objective.

What are the UE flows in the following networks?

1

2

3

46 6

50 + 𝑥

50 + 𝑥10𝑥

10𝑥

10 + 𝑥

30

0

3 30

3

1

2

3

46 6

50 + 𝑥

50 + 𝑥10𝑥

10𝑥

10 + 𝑥

0

13

0 0

0

What is the total revenue in both cases? Why might we want to collect

minimum revenue tolls?
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Congestion Pricing
Other Objectives

By congestion pricing, we typically refer to tolling mechanisms which
minimize or eliminate inefficiency caused due to selfish behavior.

In practice, tolls can be used for a variety of other purposes:

I Revenue maximization

I Maintain a certain level of service on managed lanes

I Financing mechanism for BOT projects
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Congestion Pricing
Types of Tolls

The congestion pricing mechanism discussed earlier assumes that all
links can be tolled (First-best pricing).

However, this is expensive and difficult to execute and practical
implementations often fall under the following categories.

I Facility-based schemes

I Cordon pricing (Stockholm)

I Zonal schemes (London)

Lecture 7 System Optimum, Price of Anarchy, and Congestion Pricing



34/40

Congestion Pricing
Second-best Pricing

Models in which a subset of links are tolled are called second-best pricing
schemes. Since it is a constrained version we are not guaranteed to achieve
an SO.

These models can be viewed as Stackelberg games in which the leader is
the toll operator and the travelers are the followers.

Optimal tolls in such settings are harder to compute and the following
methods are typically used.

I Bilevel Programs

I Mathematical Programs with Equilibrium Constraints (MPECs)
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Congestion Pricing
Bilevel Programs for Second-best Pricing

Bilevel programs have two optimization models: one at the upper level and
another at the lower level.

For instance, at the upper level, the objective could be

min
c

∑
(i,j)∈A

xij(c)tij(xij(c))

s.t. cij = 0∀ (i , j) ∈ A′

where A′ is the set of links on which tolls cannot be collected and xij(c)s
are the solution to the lower level UE problem

min
x∈X

∑
(i,j)∈A

∫ xij

0

(tij(ω) + cij) dω

Note that the c values are assumed to be fixed in the lower level.
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Congestion Pricing
MPECs for Second-best Pricing

MPECs on the other hand model the Wardrop equilibrium conditions as
constraints.

These equilibrium constraints are either in the from of VIs or KKT condi-
tions.

However, with these equilibrium constraints, Slater’s conditions do not hold

and additional assumptions are needed to invoke other types of constraint

qualifications and to derive the necessary conditions for optimality.
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Congestion Pricing
MPECs for Second-best Pricing

Suppose τp(y) denotes the travel time on path p given a path flow vector
y. Let the feasible region of path flows be represented as

Y =
{

y :
∑
p∈Prs

yp = drs ∀ (r , s) ∈ Z 2, yp ≥ 0 ∀ p ∈ P
}

The second-best tolling problem with VI-based equilibrium constraints can
be written as

min
y,c

∑
p∈P

ypτp(y)

s.t. y ∈ Y

cij = 0∀ (i , j) ∈ A′

[τ (y) + ∆Tc]T (y′ − y) ≥ 0 ∀ y′ ∈ Y

Note that the tolls do not feature in the objective since they are transfer

payments. We assume that they are returned to the system and hence it

does not matter how much toll is collected.
Lecture 7 System Optimum, Price of Anarchy, and Congestion Pricing
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Congestion Pricing
MPECs for Second-best Pricing

The issue with this formulation is that it has infinitely many constraints
(one for each feasible y′). Alternately, we can restrict our attention to the
extreme points of Y . Suppose y1, y2, . . . , yl are the extreme points of Y .

min
y,c

∑
p∈P

ypτp(y)

s.t. y ∈ Y

cij = 0∀ (i , j) ∈ A′

[τ (y) + ∆Tc]T (yi − y) ≥ 0 ∀i = 1, 2, . . . , l

The number of extreme points, though finite, are exponential and hence

these problems are typically solved using a column generation-type method.
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Congestion Pricing
MPECs for Second-best Pricing

If the link delay functions are separable and non-decreasing, the VIs can
be replaced with the KKT conditions of the Beckmann formulation.

min
y,c,µ

∑
p∈P

ypτp(y)

s.t. y ∈ Y

cij = 0∀ (i , j) ∈ A′

τp(y) +
∑

(i,j)∈A

δpijcij ≥ µrs ∀ (r , s) ∈ Z 2, p ∈ Prs

yp

(
τp(y) +

∑
(i,j)∈A

δpijcij − µrs

)
= 0∀ (r , s) ∈ Z 2, p ∈ Prs
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Your Moment of Zen
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