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Previously on Traffic Network Equilibrium...

Nash Equilibrium (1951)

At equilibrium, no player has an incentive to deviate.
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Wardrop Equilibrium (1952)

All used paths have equal and minimal travel time.
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Previously on Traffic Network Equilibrium...

Braess Network
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Previously on Traffic Network Equilibrium...

Proposition (Necessary and Sufficient Conditions)

x∗ is a global minimum of a differentiable convex function
f : X ⊆ Rn → R ⇔ ∇f (x∗) = 0
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Previously on Traffic Network Equilibrium...

Definition (Normal Cone)

Let X ⊆ Rn, the normal cone of X at x is defined as

NX (x) = {z ∈ Rn : zT (y − x) ≤ 0, ∀ y ∈ X}

For the purpose of the following illustration, assume x is the origin.

𝒙
𝒛

𝒩𝑋(𝒙)

𝒚 − 𝒙

𝑋

Proposition (Necessary and Sufficient Conditions)

x∗ is an optimal to the convex program min f (x) s.t. x ∈ X iff
−∇f (x∗) ∈ NX (x∗)

Lecture 4 Fixed Points and VIs



6/36

Lecture Outline

I Visualizing Equilibria

I Fixed Points

I Variational Inequalities
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Lecture Outline

Visualizing Equilibria
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Visualizing Equilibria
Statics

In the very first lecture we saw examples of equilibrium flows in traffic

networks. Are these ideas related to the notion of equilibrium in other

fields?

𝑁𝑁

𝑚𝑚𝑚𝑚

Consider the ball in the above figure. If left undisturbed, it will remain

stationary because the normal force and gravitational force balance each

other. In other words, it is in a state of equilibrium.
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Visualizing Equilibria
Statics

What happens in this scenario?

𝑁𝑁

𝑚𝑚𝑚𝑚

Equilibrium does not exist!
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Visualizing Equilibria
Statics

How about this one?

𝑁𝑁

𝑚𝑚𝑚𝑚

𝑁𝑁

𝑚𝑚𝑚𝑚 𝑁𝑁

𝑚𝑚𝑚𝑚

Equilibrium may not be unique!
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Visualizing Equilibria
Two-path Network

Consider the two-path network in the adjacent

figure. The feasible flows must satisfy x1 + x2 =

10, where x1 and x2 are the flows on the top and

bottom paths.

O D 

𝑥1 

𝑥2 

10 10 

The feasible region can be represented using the following line segment.
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x1

x2

Lecture 4 Fixed Points and VIs



12/36

Visualizing Equilibria
Two-path Network

Let the travel times on the two links depend on the flow vector x = (x1, x2)
and be denoted as t(x) = (t1(x), t2(x)).

Higher the path travel time, greater is the chance that path flow reduces

since users will shift to other paths. Hence, let’s imagine that at every

point in the feasible region, a force field (or payoffs) −t(x) exists.

If an object placed at a point in

the feasible region does not move

(within the feasible region) under

this force field, we say it is at

equilibrium. We’ll later formally

show that such points are in fact

Wardrop equilibria.
0 10
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x1

x2
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Visualizing Equilibria
Two-path Network

Alternately, we can project the force vector on the feasible region to repre-

sent components of the force field that can cause any displacement (also

called projected payoffs).

0 10

10

x1

x2

The projected payoffs can also be used to identify equlibria.
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Visualizing Equilibria
Three-path Network

Now suppose there are three parallel paths between O and D. The feasible

region is a simplex defined by x1 + x2 + x3 = 10 and can be represented

as follows. (x1, x2, and x3 are the flows on the three paths.)

0

10

10

10

x1

x2

x3

As before, the force field (payoffs) at any point is the vector −t(x). This

can be projected on the simplex to get the projected payoffs.
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Visualizing Equilibria
Three-path Network

The projected payoffs can be mapped on a 2D simplex. Equilibrium states

are points at which an object remains stationary under the projected force

field.
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Visualizing Equilibria
Three-path Network
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Visualizing Equilibria
Three-path Network

Here’s another example of the projected payoffs in which the equilibrium

occurs at (10/3,10/3,10/3).
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Visualizing Equilibria
Food for Thought

Some follow-up questions:

1 Does an equilibrium always exist?

2 If it does, is it unique or do multiple equilibria exist? Can we
compute the equilibrium?

3 Also, we guessed that using negative of the path travel times, we
can study equilibria just like we did in static mechanics. Are these
equilibrium points Wardrop equilibria?

We will address the first and third questions in this lecture using fixed
points and variational inequalities respectively.

Solutions to the second question will be discussed in later lectures.
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Lecture Outline

Fixed Points
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Fixed Points
Intuition

In the Braess network, we discussed how an equilibrium might evolve over
multiple days from route switching behavior.

Suppose this flow shifting process was captured by a function f : X → X ,
where X is the set of path flows. Imagine that f gives us the flow on the
next day if we give it the current day’s flow.

An equilibrium can be interpreted as a point at which the function returns

the same flow pattern. Such a solution is what is called a fixed point.
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Fixed Points
Definition

Definition (Fixed Point)

Let f : X → X be a function. A fixed point of f is a value x ∈ X that
satisfies f (x) = x .

One can determine conditions on X and f under which fixed points exist.
Such results are called fixed point theorems.
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Fixed Points
Definition

Theorem (Brouwer’s Fixed Point Theorem)

Suppose f : X → X is a continuous function and let X ⊆ Rn be a
compact convex set. Then f has at least one fixed point.

A set that is closed and bounded is compact.

10

1
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Fixed Points
Projection Mappings

To apply Brouwer’s theorem, let us define our flow-shifting function f as
f (x) = projX (x− t(x)), where the projection function of a point gives the
nearest point in X (we’ll formally define this later).

𝑝𝑟𝑜𝑗𝑋(𝒙 − 𝒕 𝒙 )

𝒙 − 𝒕(𝒙)

𝑋

𝒙

−𝒕 𝒙

If t(x) is continuous, the projection function is continuous and the condi-

tions of Brouwer’s theorem are satisfied! In such cases, equilibria exist.
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Fixed Points
Finding Fixed Points

Remember that the theorem only tells us that under some assump-
tions on the travel time mappings, at least one equilibrium exists.
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Fixed Points
Trivia Break

Definition (Antipodes)

The antipode of a point on the surface of the earth is a point that is
diametrically opposite to it.

Source: https://www.antipodesmap.com/
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Fixed Points
Trivia Break

There exists at least one pair of antipodes on the earth with the same
temperature! (Why?)

Source: https://www.brilliant.org/

The above observation can be generalized to a fixed point-like theorem
called the Borsuk-Ulam Theorem. Also check out https://www.youtube.
com/watch?v=FhSFkLhDANA
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Lecture Outline

Variational Inequalities
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Variational Inequalities
Introduction

We hypothesized that a force field −t(x) will help us identify the equilibria
and we established the conditions needed for existence using fixed point
theory.

But why does it work? Can we formally prove that the equilibrium points
satisfy Wardrop’s principle?

We will address this problem in two steps. First, we will show that Fixed
points ≡ Variational Inequalities and then prove that Variational Inequali-
ties ≡ Wardrop Equilibria.
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Variational Inequalities
Definition

Definition (Variational Inequality)

Let X ⊆ Rn be a closed convex set and f : X → Rn be a continuous
mapping. The finite-dimensional variational inequality problem VI(f,X )
is to find a vector x∗ such that

f(x∗)T (x− x∗) ≥ 0 ∀ x ∈ X

Note that the definition is equivalent to −f(x∗) ∈ NX (x∗). But VIs are
more general than the necessary and sufficient conditions for convex pro-
grams. (Why?)

VIs were first used in the 60s by Italian mathematician Guido Stampacchia

to study partial differential equations for problems arising in mechanics.
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Variational Inequalities
Connections with Fixed Points

Definition (Projection)

Let X ⊆ Rn be a closed convex set. For each x∗ ∈ Rn∃!y ∈ X such that

y = arg min
x∈X
‖x− x∗‖

y is called the projection of x∗ on X and is denoted by projX (x∗).

𝒙∗

𝒚

𝑋 𝒙

Lecture 4 Fixed Points and VIs



31/36

Variational Inequalities
Connections with Fixed Points

Lemma

Let X ⊆ Rn be a closed convex set

y = projX (x∗)⇔ (y − x∗)T (x− y) ≥ 0 ∀ x ∈ X

Proof.

By definition, y minimizes ‖x− x∗‖. Hence, it also minimizes ‖x− x∗‖2.

‖x− x∗‖2 is convex in x and hence the necessary and sufficient conditions
for optimality are

−2(y − x∗) ∈ NX (y)

−2(y − x∗)T (x− y) ≤ 0∀ x ∈ X

�

Lecture 4 Fixed Points and VIs



32/36

Variational Inequalities
Connections with Fixed Points

Proposition

Suppose X is closed and convex. x∗ is a solution to VI(f,X ) iff x∗ is a
fixed point of projX (x− f(x)), i.e., x∗ = projX (x∗ − f(x∗))

Proof.

(⇒) Since x∗ is a solution to VI(f,X ),

f (x∗)T (x− x∗) ≥ 0 ∀ x ∈ X

⇒
(
x∗ − (x∗ − f (x∗))

)T
(x− x∗) ≥ 0 ∀ x ∈ X

According to previous lemma,

y = projX (x∗)⇔ (y − x∗)T (x− y) ≥ 0 ∀ x ∈ X

Hence, x∗ = projX (x∗ − f(x∗)).

(⇐) Exercise. �
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Variational Inequalities
VIs and Equilibrium

So far, we have established that

1 If t(x) is continuous, the function projX (x− t(x)) has fixed points.

2 These fixed points solve VI(t,X ).

The last piece of the puzzle is to prove that the solutions to the VI are
actually Wardrop equilibria.
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Variational Inequalities
VIs and Equilibrium

Theorem

x∗ satisfies the VI(t,X )⇔ it satisfies the Wardrop principle

Proof.

(⇒) Since x∗ satisfies the VI, t(x∗)T (x− x∗) ≥ 0, i.e,

t(x∗)Tx∗ ≤ t(x∗)Tx ∀ x ∈ X

Imagine the path travel times are fixed at t(x∗). The RHS, t(x∗)Tx is
the total system travel time (TSTT) incurred by the flow pattern x.

When the path travel times are fixed, TSTT is minimized if we route
travelers on least travel time paths between each OD pair. Thus, from
the above inequality x∗ is a Wardrop equilibrium.

(⇐) Exercise. �
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Historical Notes
Supplementary Reading

The VI version for Wardrop equilibria was first discovered by Michael Smith

in his 1979 seminal paper. [PDF]

Connections with the theory of VIs was formally identified an year later by
Stella Dafermos* who also extended the conditions under which equilibria
exist and provided an algorithm to compute it. [PDF]

Related text books:

I Patricksson, Chapter 3

I Nagurney, A. (2013). Network economics: A variational inequality
approach (Vol. 10). Springer Science & Business Media.

I Sandholm, W. H. (2010). Population games and evolutionary
dynamics. MIT press.

*She was the second woman to receive a PhD in Operations Research
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http://www.jstor.org/stable/25767967
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Your Moment of Zen

Lecture 4 Fixed Points and VIs


