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Previously on Traffic Network Equilibrium...

In the gradient projection method,

− g(0)

g ′(0)
=

τp − τp∗∑
(i,j)∈Â t ′ij(xij)

However, this flow shift may result in negative yp. Hence, perform a
projection step by setting

∆y = min

{
yp,

τp − τp∗∑
(i,j)∈Â t ′ij(xij)

}
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Previously on Traffic Network Equilibrium...

We saw that the equilibrium solutions satisfy two interesting properties.

1 The equilibrium OD flow cannot be present on both sides of a
two-way street.

2 The ratio of flows on any two routes between an OD pair is
independent of the OD demand. Further, for a given PAS, the ratio
of flows on the two segments is same across all OD pairs.
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Previously on Traffic Network Equilibrium...

To topologically order nodes, define the indegree of a node as the number
of arcs coming into it. Consider a node i with zero indegree. Set ϑi = 1.

Delete the arcs emanating from i . Pick a new node with indegree zero and
set it’s topological order to 2.

Repeat this procedure until there are no nodes with zero indegree. If there

are leftover nodes, then the network is acyclic.
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Previously on Traffic Network Equilibrium...

In topological ordering, we essentially delete arcs and update the indegrees
of nodes. Hence, the complexity of topological ordering is O(m).

To find the shortest path in a DAG, we simply scan nodes in increasing
topological order and update the labels of the downstream arcs.

In this version, we do not find a node with minimum distance label nor do

we keep track of a SEL. Each arc is scanned at most once. Hence, the

complexity of this method is O(m).
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Lecture Outline

1 Introduction

2 Equilibrate Bushes

3 Optimize Bushes
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Lecture Outline

Introduction
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Introduction
Bush-based Methods

Bush-based or origin-based methods are ones in which we keep track of
the set of “used arcs” for each origin.

These arcs can be identified by superposing all used paths, which results
in an acyclic connected graph, i.e., a bush.
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Introduction
Bush-based Methods

Bush-based methods essentially solve the following version of the TAP.
The decision variables are x rij , the link flows segregated by origins.

min
∑

(i,j)∈A

∫ xij

0

tij(ω) dω

s.t.
∑

j :(i,j)∈A

x rij −
∑

h:(h,i)∈A

x rhi =


∑

s∈Z dis if i = r

−dri if i = s

0 otherwise

∀ r ∈ Z

xij =
∑
r∈Z

x rij ∀ (i , j) ∈ A

x rij ≥ 0 ∀ (i , j) ∈ A, r ∈ Z

We will discuss two main components of the algorithm today and put these

pieces together in the next class.
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Introduction
Bush-based Methods

For now, we will look at the bushes for a single origin, while keeping the
flows from other origins to other destinations fixed.

In other words, the flows from other OD pairs are treated as “background
flows”. They will be modified in different iterations of Algorithm B.
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Lecture Outline

Equilibrate Bushes
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Equilibrate Bushes
Introduction

In the ‘Equilibrate Bush’ step, we try to satisfy the Wardrop principle for a
given origin and all destinations by routing flows along different paths
only using the Bush arcs.

The flow shifts are similar to gradient projection where we move travelers

from longest to shortest PASs using Newton’s method.
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Equilibrate Bushes
Example

Copy the following example, we will use this to illustrate how bushes are
equilibrated. Imagine there are 10 traveler from 1 to 9.

1

54

32

6

987

2 + 𝑥2 2 + 𝑥2

2 + 𝑥2

2 + 𝑥2

2 + 𝑥24 + 2𝑥2

4 + 2𝑥2

2 + 𝑥2

2 + 𝑥2

2 + 𝑥2

2 + 𝑥2

2 + 𝑥2

40 + 2𝑥2
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Equilibrate Bushes
Example

Suppose at an intermediate iteration, we get a bush with origin-based link
flows as shown in the following figure.

1

54

32

6

987

3

71

1

7

5

5
1

3

3

3

Lecture 23 Algorithm B - Part I



15/35

Equilibrate Bushes
Example

Carry out the following steps on the 9 node network.

1 Compute link travel times

2 Compute link travel time derivatives

3 Find a topological ordering of the bush

4 Solve the shortest path problem

5 Solve the longest path problem

For the last two steps, find the distance and predecessor labels.
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Equilibrate Bushes
Example

1. Link travel times:

1

54

32

6

987

11

516

6

51

27

27
42

11

11

11
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Equilibrate Bushes
Example

2. Link derivatives:

1

54

32

6

987

6

144

4

14

10

10
4

6

6

6
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Equilibrate Bushes
Example

3. Topological Ordering:

1

54

32

6

987

1 2 3

4 5 6

7 8 9

Note: There could be multiple ways to topologically order nodes (it dosen’t
matter which one you pick).
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Equilibrate Bushes
Example

4.Shortest Path Problem:

1

54

32

6

987

11

516

6

51

27

27
42

11

11

11

10 111 222

151 478 333

457 763 644
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Equilibrate Bushes
Example

5. Longest Path Problem:

1

54

32

6

987

11

516

6

51

27

27
42

11

11

11

10 111 222

151 478 333

457 5105 8156
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Equilibrate Bushes
Pseudocode

After finding the shortest and longest path labels and predecessors, the following
steps are carried out.

1 Pick a node j with the highest topological order.

2 Use the shortest and longest paths to j to identify the last common node
or divergence node i .

3 Determine the PASs using the shortest and longest sub-paths P ij and P ij .

4 Calculate flow shift using Newton’s method.

5 Update origin-based flows for the bush.

6 Set j to the previous node topologically and repeat from Step 2 until the
origin r is reached.
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Equilibrate Bushes
Newton’s Method

Let j represent the last common node.

∆y =
(νrj − νri )− (µr

j − µr
i )∑

(k,l)∈P ij∪P ij
t ′kl

However, we also need to ensure that the flow shift does not result in
negative link flows. Hence, we impose

∆y ≤ min
(k,l)∈P ij

x rkl

One can do multiple iterations of Newton’s method (without resolving

for the shortest and longest paths) to make the travel times as close as

possible.
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Equilibrate Bushes
Example

Iteration 1: j = 9

1

54

32

6

987

11

516

6

51

27

27
42

11

11

11

10 111 222

151 478 333

457 5105 8156

1

54

32

6

987

11

516

6

51

27

27
42

11

11

11

10 111 222

151 478 333

457 763 444

The shortest and longest paths to 9 are 1-2-3-6-9 and 1-4-5-8-9. Hence, the last

common node is i = 1.
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Equilibrate Bushes
Example

Iteration 1: j = 9

The PASs between i and j are

P ij = 1-2-3-6-9

P ij = 1-4-5-8-9

and the amount of flow to be shifted
between them is

min

{
5,

156 − 44

72

}
= 1.56

1

54

32

6

987

4.56

5.441

1

5.44

3.44

3.44
1

4.56

4.56

4.56

We could update travel times, derivatives, and the shortest and longest paths,

but it is not needed for convergence. To save time, we will do that only after we

examine all nodes j in reverse topological order.
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Equilibrate Bushes
Example

Iteration 2: j = 8

1

54

32

6

987

11

516

6

51

27

27
42

11

11

11

10 111 222

151 478 333

457 5105 8156

1

54

32

6

987

11

516

6

51

27

27
42

11

11

11

10 111 222

151 478 333

457 763 444

The shortest and longest paths to 8 are 1-4-7-8 and 1-4-5-8. Hence, the last

common node is i = 4.
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Equilibrate Bushes
Example

Iteration 2: j = 8

The PASs between i and j are

P ij = 4-7-8

P ij = 4-5-8

and the amount of flow to be shifted
between them is

min

{
3.44,

54 − 12

28

}
= 1.5

1

54

32

6

987

4.56

5.442.5

2.5

5.44

1.94

1.94
1

4.56

4.56

4.56
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Equilibrate Bushes
Example

Iteration 3: j = 7

1

54

32

6

987

11

516

6

51

27

27
42

11

11

11

10 111 222

151 478 333

457 5105 8156

1

54

32

6

987

11

516

6

51

27

27
42

11

11

11

10 111 222

151 478 333

457 763 444

The shortest and longest paths to 7 are 1-4-7 and 1-4-7. Hence, the last common

node is i = 7. Hence, no flow shift is necessary in this case.
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Equilibrate Bushes
Example

Proceeding similarly, we notice that the shortest and longest paths to all other
nodes with lower topological order are the same. Therefore, the link flows won’t
change.

The new flows (left) and travel times (right) at the end of one ‘Equilibrate Bush’
step are

1

54

32

6

987

4.56

5.442.5

2.5

5.44

1.94

1.94
1

4.56

4.56

4.56

1

54

32

6

987

22.79

31.5916.5

16.5

31.59

5.76

5.76
42

22.79

22.79

22.79

2

2
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Lecture Outline

Optimize Bushes
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Optimize Bushes
Introduction

After shifting flows in ‘Equilibrate Bush’, we get an ε-equilibrium bush.
We can then update the link travel times for the new flows as seen earlier.

In the ‘Optimize Bush’ step, we try to update the bush by including shorter
paths that are not a part of the current bush.

This step is carried out by

I Removing unused arcs

I Adding new shortcuts
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Optimize Bushes
Removing Unused Arcs

Flow shifts in ‘Equilibrate Bush’ can result in zero flows on certain bush
links.

We can delete these links unless they are needed to ensure connectivity.
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Optimize Bushes
Adding New Shortcuts

To add links that are on new shortest paths, we have two options.

We could resolve the shortest path problem on the current bush B r , and
check for non-bush links (i , j) /∈ B r that satisfy µj > µi + tij .

The only issue though is that this method may create cycles if B r is not
fully equilibrated!
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Optimize Bushes
Adding New Shortcuts

The second option is to use the longest path labels instead of the shortest
paths.

A non-bush link (i , j) /∈ B r is added to the bush only if νj > νi + tij .

It is easy to show that this approach does not induce cycles even if the

bush B r isn’t fully equilibrated.
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Optimize Bushes
Example

Find the new bush arcs in the following network using the longest path
labels.

1

54

32

6

987

22.79

31.5916.5

16.5

31.59

5.76

5.76
42

22.79

22.79

22.79

2

2

0 22.79

31.59

45.58

68.37

37.35

48.09 73.59 105.18
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Your Moment of Zen
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