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Previously on Traffic Network Equilibrium...

Given a link flow vector x, the path flows cannot however be uniquely
identified.
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Can you find multiple path flows in the above network?
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Previously on Traffic Network Equilibrium...
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Introduction
Applications of Path Flows

If the traffic assignment problem is used only for predicting congestion,
then the link flows and link travel times suffice.

However, many interesting applications benefit from the knowledge of pre-
dicted routes of all travelers.
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Introduction
Applications of Path Flows

In Lecture 1, we saw one such example: Select link analysis, which helps
identify the OD pairs that use a particular link.

Other applications of path flow solutions include

I Estimating emissions

I Predicting OD flows from link-level counts

I Path differentiated congestion pricing

I Equity analysis
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Introduction
Intuition

Since multiple path flow solutions exist for a given link flow pattern, we
will identify the solution that we think is most likely.

Before proceeding to identify the most likely path flow, let us study a
related example.

Imagine a container with n gas molecules. Suppose, at some time instance,
they are all present at one end of the container.
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Introduction
Intuition

What is the probability with which this configuration can occur?

The probability with which each molecule could be in the left half is 1/2.
Hence, the probability of above configuration is (1/2)n.

Now consider an alternate configuration. Do you think this is more likely?
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Introduction
Intuition

What is the probability of this new configuration?

Suppose we toss a coin and if we see heads, we place the molecule in the
left portion and we see tails, we place it at the right end.

For the new configuration, we need exactly n/2 heads in n trials, where
the probability of heads is 1/2. Using the pmf of the Binomial distribution,
the odds of the configuration is(

n

n/2

)(
1

2

)n/2(
1

2

)n/2

=
n!(

(n/2)!
)2

(
1

2

)n

As n! ≫
(
(n/2)!

)2
, the above probability is greater than the probability

of the previous configuration.
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Introduction
Intuition

The second configuration is said to have higher entropy compared to the
first. In other words, it is a more disordered state.

Likewise, we will try to find a high entropy path flow solution that spreads
out travelers across minimal paths.

Does the GP algorithm provide high entropy solutions?
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Entropy Maximization
Introduction

Which of these three solutions has the highest entropy?
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Entropy Maximization
Calculating Probabilities

Imagine k paths between a single OD pair. Suppose, there are y1, y2, . . . , yk
travelers on these paths and for now assume they are integers.

Roll a k-sided die and assign all d travelers to different paths. The prob-
ability that exactly y1, y2, . . . , yk travelers are on these paths is given by
the pmf of the multinomial distribution

d!

y1!y2! . . . yk !

(
1

k

)y1
(

1

k

)y2

. . .

(
1

k

)yk

=
d!

y1!y2! . . . yk !

(
1

k

)d

Hence, a path flow solution has the largest entropy if d!
y1!y2!...yk ! is maxi-

mized.
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Entropy Maximization
Stirling’s Approximation

Instead of maximizing the factorial terms, we can maximize the logarithm
of the above expression

ln d!−
k∑

p=1

ln yp!

which can be approximated using Stirling’s formula as

(d ln d − d)−
k∑

p=1

(yp ln yp − yp)

=
k∑

p=1

yp ln d − d −
k∑

p=1

yp ln yp +
k∑

p=1

yp

=
k∑

p=1

yp(ln d − ln yp) = −
k∑

p=1

yp ln(yp/d)
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Entropy Maximization
Extension to Multiple OD Pairs

For multiple OD pairs, the probability of observing a given flow pattern is
the product of probabilities of observing the flows for individual OD pairs.

Thus, Stirling’s approximation will result in an extra summation across all
OD pairs:

−
∑

(r ,s)∈Z 2

∑
p∈Prs

yp ln(yp/drs)

If we include constraints in which the path flow variables provide equilib-

rium link flows (which are unique), then we can write the entropy maxi-

mization problem as a non-linear program.
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Entropy Maximization
Optimization Formulation

The xUEij s in the formulation are the UE link flows (from MSA or FW) and
are constants.

min
∑

(r ,s)∈Z 2

∑
p∈Prs

yp ln(yp/drs)

s.t.
∑
p∈P

δpijyp = xUEij ∀ (i , j) ∈ A

∑
p∈Prs

yp = drs ∀ (r , s) ∈ Z 2

yp ≥ 0 ∀ p ∈ P

Is the objective convex? What’s the challenge in solving the above convex

program?
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Proportionality
Introduction

It so happens that maximizing entropy guarantees that the path flows
satisfy a property called proportionality (which we will derive using the
KKT conditions).

This property is exploited in some of the most recent equilibrium algo-
rithms.
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Proportionality
KKT Conditions

Write the KKT conditions of the following program.

min
∑

(r ,s)∈Z 2

∑
p∈Prs

yp ln(yp/drs)

s.t.
∑
p∈P

δpijyp = xUEij ∀ (i , j) ∈ A

∑
p∈Prs

yp = drs ∀ (r , s) ∈ Z 2

yp ≥ 0 ∀ p ∈ P

Note that the non-negativity constraints in the maximum entropy formu-

lation are redundant.
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Proportionality
KKT Conditions

L(y,λ,µ) =
∑

(r ,s)∈Z 2

∑
p∈Prs

yp ln(yp/drs) +
∑

(i,j)∈A

λij

xUEij −
∑
p∈P

δpijyp


+

∑
(r ,s)∈Z 2

µrs

drs −
∑
p∈Prs

yp


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Proportionality
KKT Conditions

Primal feasibility: ∑
p∈P

δpijyp = xUE
ij ∀ (i , j) ∈ A

∑
p∈Prs

yp = drs ∀ (r , s) ∈ Z 2

Dual feasibility:

Complementary Slackness:

Gradient of the Lagrangian vanishes:

yp
∂

∂yp
ln(yp/drs) + ln(yp/drs)−

∑
(i,j)∈A

δpijλij − µrs = 0 ∀ p ∈ Prs , (r , s) ∈ Z 2
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Proportionality
KKT Conditions

The last condition can be written as

1 + ln(yp/drs)−
∑

(i,j)∈A

δpijλij − µrs = 0

⇒ yp = drs exp
(
− 1 + µrs +

∑
(i,j)∈A

δpijλij

)

From supply-demand constraint/primal feasibility, for an OD pair (r , s),∑
p∈Prs

drs exp
(
− 1 + µrs +

∑
(i,j)∈A

δpijλij

)
= drs

∑
p∈Prs

exp(−1 + µrs) exp
( ∑

(i,j)∈A

δpijλij

)
= 1

∑
p∈Prs

exp
( ∑

(i,j)∈A

δpijλij

)
= exp(1− µrs)
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Proportionality
KKT Conditions

We can thus write µrs as a function of λs as follows:

µrs = 1− ln

( ∑
p∈Prs

exp
( ∑

(i,j)∈A

δpijλij

))

Plugging this in the last KKT condition,

yp = drs exp

 ∑
(i,j)∈A

δpijλij − ln

( ∑
p′∈Prs

exp
( ∑

(i,j)∈A

δp
′

ij λij

))
=

drs∑
p′∈Prs

exp
(∑

(i,j)∈A δ
p′

ij λij

) exp
( ∑

(i,j)∈A

δpijλij

)
The first term in the above expression depends only on the OD pair (r , s).

(Why?)
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Proportionality
KKT Conditions

Hence, we may write

yp = Krs exp
( ∑

(i,j)∈A

δpijλij

)
where Krs is some constant. Further, for any paths p and p′ between (r , s),

yp
yp′

=
exp

(∑
(i,j)∈A δ

p
ijλij

)
exp

(∑
(i,j)∈A δ

p′

ij λij

)
=

∏
(i,j)∈Â exp(δpijλij)∏
(i,j)∈Ā exp(δp

′

ij λij)

where Â is the set of links that belong to p and not p′ and Ā is the set of

links that belong to p′ and not p. The above ratio depends only on the

pairs of alternate segments (PAS) and not on the OD pair!
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Proportionality
KKT Conditions

The converse of the above observation is not true! In other words, flow
solutions that satisfy proportionality need not maximize entropy.

Proportionality drastically reduces the search space (see column Core in

the above figure).
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Proportionality
Example

Consider the following network. Suppose that the demand between 1 and 8 is
100 and between 2 and 7 is 200.
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Travelers between each OD pair have two paths to choose from. The numbers
on the links represent equilibrium flows.

What is an obvious path flow decomposition? Does it maximize entropy?
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Proportionality
Example

The entropy maximizing solution splits travelers between the two paths in
the following way.
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I OD Pair (1,7):
Path 1-3-5-6-7: 40
Path 1-3-4-6-7: 60

I OD Pair (2,8):
Path 2-3-5-6-8: 160
Path 2-3-4-6-8: 240

Notice that the ratios of path flows on the PASs for both OD pairs are

same! (Why?)
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Proportionality
Bush-based Algorithms and TAPAS

Over the last two lectures we saw that the equilibrium solutions satisfy two
interesting properties.

1 The equilibrium OD flow cannot be present on both sides of a
two-way street.

2 The ratio of flows on any two routes between an OD pair is
independent of the OD demand. Further, for a given PAS, the ratio
of flows on the two segments is same across all OD pairs.
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Proportionality
Bush-based Algorithms and TAPAS

The first observation led to the development of bush-based algorithms which
we will discuss over the next few lectures. The run-times of these are orders of
magnitude faster than FW and GP.

The second observation led to the development of TAPAS (Traffic Assignment
by Paired Alternate Segments) by Hillel Bar-Gera in 2010.

TAPAS is a bush-based method that finds equilibrium flows while ensuring pro-
portionality. It is currently one of the fastest algorithms for finding the equilibrium
solutions.
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Proportionality
Bush-based Algorithms and TAPAS
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Proportionality
Bush-based Algorithms and TAPAS
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Your Moment of Zen
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