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Previously on Traffic Network Equilibrium...

Given a link flow vector x, the path flows cannot however be uniquely
identified.

Can you find multiple path flows in the above network?
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Previously on Traffic Network Equilibrium...

Path Path Path
Flow 1 Flow2  Flow3
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Applications of Path Flows

If the traffic assignment problem is used only for predicting congestion,
then the link flows and link travel times suffice.

However, many interesting applications benefit from the knowledge of pre-
dicted routes of all travelers.
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Applications of Path Flows

In Lecture 1, we saw one such example: Select link analysis, which helps
identify the OD pairs that use a particular link.

Other applications of path flow solutions include
» Estimating emissions
» Predicting OD flows from link-level counts
» Path differentiated congestion pricing

» Equity analysis
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Introduction

Since multiple path flow solutions exist for a given link flow pattern, we
will identify the solution that we think is most likely.

Before proceeding to identify the most likely path flow, let us study a
related example.

Imagine a container with n gas molecules. Suppose, at some time instance,
they are all present at one end of the container.

8/34



Introduction

What is the probability with which this configuration can occur?

The probability with which each molecule could be in the left half is 1/2.
Hence, the probability of above configuration is (1/2)".

Now consider an alternate configuration. Do you think this is more likely?
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Introduction

What is the probability of this new configuration?

Suppose we toss a coin and if we see heads, we place the molecule in the
left portion and we see tails, we place it at the right end.

For the new configuration, we need exactly n/2 heads in n trials, where
the probability of heads is 1/2. Using the pmf of the Binomial distribution,
the odds of the configuration is

(=) () ) = oy ()
n/2)\2) \2) ((n/2))* \2
As nl > ((n/2)!)2, the above probability is greater than the probability

of the previous configuration.
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Intuition

The second configuration is said to have higher entropy compared to the
first. In other words, it is a more disordered state.

Likewise, we will try to find a high entropy path flow solution that spreads
out travelers across minimal paths.

Does the GP algorithm provide high entropy solutions?

11/34
Lecture 21 Entropy Maximization



Entropy Maximization
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Introduction

Which of these three solutions has the highest entropy?

Path Path Path
Flow 1 Flow2  Flow3
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Entropy Maximization

Imagine k paths between a single OD pair. Suppose, there are y1, y, .. ., yk
travelers on these paths and for now assume they are integers.

Roll a k-sided die and assign all d travelers to different paths. The prob-
ability that exactly yi, y», ..., yk travelers are on these paths is given by
the pmf of the multinomial distribution

(&) ) () = )
yilyol oy \ k k) T \k T only!l oy \k

7 IS maxi-

Hence, a path flow solution has the largest entropy if Iyli'y

mized.
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Entropy Maximization

Instead of maximizing the factorial terms, we can maximize the logarithm
of the above expression

k
Ind! = Iny,!
p=1

which can be approximated using Stirling's formula as

k
(dind —d) = > (ypIny, —y,
p=1
k
:ZyplndfdeyplnquLZyp
—Zyplnd Iny,) = Zyplnyp/d
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Entropy Maximization

For multiple OD pairs, the probability of observing a given flow pattern is
the product of probabilities of observing the flows for individual OD pairs.

Thus, Stirling’s approximation will result in an extra summation across all
OD pairs:

- Z Z)’pln()’p/drS)

(r,s)EZ2 pEPys

If we include constraints in which the path flow variables provide equilib-
rium link flows (which are unique), then we can write the entropy maxi-
mization problem as a non-linear program.
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Entropy Maximization

The x Es in the formulation are the UE link flows (from MSA or FW) and
are constants

Z Z Yp In(yp/drs)

(r,s)€Z? pePys

st. Y by, =x{FV(ij)cA

peP

Z Yp=ds ¥V (r,s) € Z°
PEPs

Yo >20VpeP

Is the objective convex? What's the challenge in solving the above convex
program?
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Proportionality
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Introduction

It so happens that maximizing entropy guarantees that the path flows
satisfy a property called proportionality (which we will derive using the
KKT conditions).

This property is exploited in some of the most recent equilibrium algo-
rithms.
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KKT Conditions

Write the KKT conditions of the following program.

min Z Zypln(yp/d,s)

(r,s)€Z? pePis

st. Y Py, =x{FV(ij)eA

peEP

> yp=dsV(r,s) € 2
PEP:s

Yo >0V peP

Note that the non-negativity constraints in the maximum entropy formu-
lation are redundant.
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KKT Conditions

LA p)= Y > velnle/ds)+ Y Xj [ X7 =D v

(r,s)€Z2 pEPs (if)eA peP
+ Z Hrs drs — Z Yp
(r,s)€Z? pEPs
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KKT Conditions

Primal feasibility:

Zauyp XU (7./) € A

PEP

z:y,,:d,sV(r,s)eZ2

PEPs

Dual feasibility:
Complementary Slackness:

Gradient of the Lagrangian vanishes:

0
}’pa In(yp/drs) + In(yp/drs) — Z 0fXj — prs =0V p € Prs, (r,5) € z
(if)eA
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Proportionality

The last condition can be written as

L+In(yp/ds) = > 08X; — s =0
(ij)eA

= Yp = drsexF)(f 1+Mrs+ Z 55)\11)
(ij)EA

From supply-demand constraint/primal feasibility, for an OD pair (r, s),

Z drsexp(*1+ﬂrs+ Z 55)\,J) :drs

pEPss (i,j)eA
Zexp( 14 prs) exp(26 )
PEPs (’J EA
Z exp ( Z 5ij)"'j) = exp(1l — furs)
PEP (ij)EA
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Proportionality

We can thus write p,s as a function of As as follows:

et (el 5 )

pEPs (iJ)eA

Plugging this in the last KKT condition,

Yo =dmexp | D 08N, - ( 3 exp( 3 ))

(i,j)EA p'EPs (i,j)EA

drs ) ( Z 5’1)\”)

ZP/GP,S eXp (Z (ij)eA 5:1 Ai (iJ)eA

The first term in the above expression depends only on the OD pair (r, s).
(Why?)
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Proportionality

Hence, we may write

Yp = Kisexp ( Z 55')"'])

(ij)EA

where K5 is some constant. Further, for any paths p and p’ between (r, s),

vo _ P (Zneadi)

Yo exp(Z,JGAéfj’)\)
g jeaexp(05Ai)
- H(i.j)elx eXP(‘SZ"/)‘ij)

where A is the set of links that belong to p and not p’ and A is the set of
links that belong to p’ and not p. The above ratio depends only on the
pairs of alternate segments (PAS) and not on the OD pair!
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Proportionality

The converse of the above observation is not true! In other words, flow
solutions that satisfy proportionality need not maximize entropy.

# MEUE optimality
conditions =# basic DSPRs

Network EWO0? EBO® Core Total (A)

Sioux Falls 138 70 5 213
Barcelona 2,268 948 38 3,254
Winnipeg 2,430 2,942 2 5,374
Tucson 1,179,105 22,911 8 1,202,024
Chicago s. 27,261 6,204 4 33,469

Chicago r. 89,822,183 901,656 Ell 90,723,930

Proportionality drastically reduces the search space (see column Core in
the above figure).
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Proportionality

Consider the following network. Suppose that the demand between 1 and 8 is
100 and between 2 and 7 is 200.

Travelers between each OD pair have two paths to choose from. The numbers
on the links represent equilibrium flows.

What is an obvious path flow decomposition? Does it maximize entropy?
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Proportionality

The entropy maximizing solution splits travelers between the two paths in

the following way.

Notice that the ratios of path flows on the PASs for both OD pairs are

same! (Why?)

OD Pair (1,7):
Path 1-3-5-6-7: 40
Path 1-3-4-6-7: 60

OD Pair (2,8):
Path 2-3-5-6-8: 160
Path 2-3-4-6-8: 240
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Proportionality

Over the last two lectures we saw that the equilibrium solutions satisfy two
interesting properties.

The equilibrium OD flow cannot be present on both sides of a
two-way street.

The ratio of flows on any two routes between an OD pair is
independent of the OD demand. Further, for a given PAS, the ratio
of flows on the two segments is same across all OD pairs.
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Proportionality

The first observation led to the development of bush-based algorithms which
we will discuss over the next few lectures. The run-times of these are orders of
magnitude faster than FW and GP.

The second observation led to the development of TAPAS (Traffic Assignment
by Paired Alternate Segments) by Hillel Bar-Gera in 2010.

TAPAS is a bush-based method that finds equilibrium flows while ensuring pro-
portionality. It is currently one of the fastest algorithms for finding the equilibrium
solutions.
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Bush-based Algorithms and TAPAS
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Bush-based Algorithms and TAPAS
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