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Previously on Traffic Network Equilibrium...

Nash Equilibrium (1951)

At equilibrium, no player has an incentive to deviate.

I Who are the agents/players of the game?
Travelers

I What are the actions available to each player?
Paths between the origin-destination (OD) pair

I What are the (dis)utilities of each player for a particular
outcome?
Path travel times

Wardrop Equilibrium (1952)

All used paths have equal and minimal travel time.
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Previously on Traffic Network Equilibrium...

If you build it, they will come. But...

1

2

3

46 6

50 + 𝑥𝑥

50 + 𝑥𝑥10𝑥𝑥

10𝑥𝑥

10 + 𝑥𝑥

Building new road(s) may lead to more congestion. Equivalently, shutting
down a road(s) may improve traffic!
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Previously on Traffic Network Equilibrium...

Any optimization program can be written in the following standard form.

min
x

f (x)

s.t. gi (x) ≤ 0 ∀ i = 1, 2, . . . , l

hi (x) = 0 ∀ i = 1, 2, . . . ,m

x ∈ X

The functions g and h define the inequality and equality constraints re-
spectively. The set X is used to represent additional constraints (e.g.,
integrality), which we won’t have in this course. Instead, we use X to
denote implicit constraints.

The set of decision variables that satisfy all the constraints is called the
feasible region.

Maximization problems can be converted into the standard form by simply
changing the sign of the objective function.

Lecture 2 Review of Convex Optimization - Part I



5/47

Lecture Outline

1 Convex Sets

2 Convex Functions

3 Unconstrained Optimization

4 Constrained Optimization
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Lecture Outline

Convex Sets
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Convex Sets
Note on Notation

Throughout the course we will try to use

I Boldfaced lower case letters to denote vectors (e.g., x, y)

I Boldfaced upper case letters to denote matrices (e.g., A,B)

I Blackboard bold typeface to denote standard sets such as reals,
integers (e.g., R,Z)

I Upper case (e.g., X ,Y ) and calligraphic letters (e.g., M,N ) to
denote sets and functions

Also, all vectors are assumed to be column vectors.
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Convex Sets
Definition

Definition (Convex Set)

A set X is convex iff the convex combination of any two points in the set
also belongs to the set. Mathematically,

X ⊆ Rn is convex⇔ ∀ x, y ∈ X and ∀λ ∈ [0, 1], λx + (1− λ)y ∈ X

𝑥𝑥

𝑦𝑦

𝑥𝑥
𝑦𝑦
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Convex Sets
Examples

Which of the following sets are convex?

1 Empty Set ∅

2 Euclidean Ball B(x0, ε) = {x ∈ Rn | ‖x− x0‖ ≤ ε}
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Convex Sets
Examples

Definition (Hyperplane)

Sets of the form {x ∈ Rn | aTx = b}, where a ∈ Rn, a 6= 0, b ∈ R are
called hyperplanes.

𝒂𝒂

𝒂𝒂𝑇𝑇𝒙𝒙 = 𝑏𝑏
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Convex Sets
Examples

Definition (Halfspace)

Sets of the form {x ∈ Rn | aTx ≤ b}, where a ∈ Rn, a 6= 0, b ∈ R are
called halfspaces.

𝒂𝒂

𝒂𝒂𝑇𝑇𝒙𝒙 ≤ 𝑏𝑏𝒂𝒂𝑇𝑇𝒙𝒙 ≥ 𝑏𝑏
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Convex Sets
Examples

Definition (Polyhedron)

A polyhedron is a set of the form P = {x ∈ Rn |Ax ≤ b} where
A ∈ Rm×n,b ∈ Rm.

𝑨𝑨𝟏𝟏⋅

𝑃𝑃
𝑨𝑨𝟐𝟐⋅

𝑨𝑨𝟒𝟒⋅

𝑨𝑨𝟑𝟑⋅

Definition (Polytope)

A bounded polyhedron is called a polytope.
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Convex Sets
Examples

Definition (Cone)

A set C is called a cone if for every x ∈ C and λ ≥ 0, λx ∈ C .

𝟎𝟎

𝒙𝒙

𝟎

𝒚

𝒙

Definition (Convex Cone)

A set C is called a convex cone if it is convex and a cone, i.e., ∀ x, y ∈ C
and λ1, λ2 ≥ 0, λ1x + λ2y ∈ C .
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Lecture Outline

Convex Functions
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Convex Functions
Definition

Definition (Convex Function)

A function f : X ⊆ Rn → R is convex if ∀ x, y ∈ X , λ ∈ [0, 1],

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)

𝑥𝑥 𝑦𝑦𝜆𝜆𝜆𝜆 + 1 − 𝜆𝜆 𝑦𝑦

𝑓𝑓(𝜆𝜆𝜆𝜆 + 1 − 𝜆𝜆 𝑦𝑦)

𝜆𝜆𝑓𝑓 𝑥𝑥 + 1 − 𝜆𝜆 𝑓𝑓(𝑦𝑦)

Lecture 2 Review of Convex Optimization - Part I



16/47

Convex Functions
Examples

Which of the following functions are convex?

1 12x

2 x3

3 x4

4 |x |

5 ex

6 sin x

7 log x

8 f (x) = max{x1, x2, . . . , xn}
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Convex Functions
Differentiable Functions

Definition (Convex Function)

A differentiable function of one variable f : X ⊆ R→ R is convex iff

f (y) ≥ f (x) + f ′(x)(y − x)∀ x , y ∈ X

𝑥𝑥 𝑦𝑦

𝑓𝑓′ 𝑥𝑥 (𝑦𝑦 − 𝑥𝑥)

𝑓𝑓(𝑥𝑥)

𝑓𝑓 𝑦𝑦
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Convex Functions
Differentiable Functions

For functions of more than one variable, the derivative can be replaced
with the gradient vector.

Definition (Convex Function)

A differentiable function of multiple variables f : X ⊆ Rn → R is convex
iff

f (y) ≥ f (x) +∇f (x)T (y− x)∀ x, y ∈ X

where

∇f (x) =



∂f
∂x1

∂f
∂x2

...

∂f
∂xn


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Convex Functions
Differentiable Functions - Visualizing the Gradient

For a function of one variable, the gradient at a point in the domain is
simply the slope of the tangent at the corresponding function value.

What does the gradient look like for functions of more than one variable?
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Convex Functions
Differentiable Functions - Visualizing the Gradient

Definition (Level Sets)

Let c ∈ R. The level set of a function f : X ⊆ Rn → R is defined as

Lf (c) = {x ∈ X | f (x) = c}

When f is a function of two variables, the level sets are also referred to as

contour lines or level curves and when f is a function of three variables

they are called level surfaces.
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Convex Functions
Differentiable Functions - Visualizing the Gradient

Consider the function f (x) = x2
1 + 2x2

2

−4 −2 0 2 4 −5

0

5
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Convex Functions
Differentiable Functions - Visualizing the Gradient

Consider the function f (x) = x2
1 +2x2

2 . The level sets are ellipses x2
1 +2x2

2 =
c .

−4 −2 0 2 4 −5

0

5
0
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Convex Functions
Differentiable Functions - Visualizing the Gradient

The following plot shows the level sets and the gradient [2x1 4x2]T .

−4 −2 0 2 4

−4

−2

0

2

4

The gradient vector is ‘orthogonal to the level sets’∗

∗A formal proof is a little involved but is not difficult and makes use of the Implicit Function Theorem.
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Convex Functions
Differentiable Functions - Visualizing the Gradient

Consider the function of three variables f (x) = x2
1 +x2

2 +x2
3 . (It’s impossible

to visualize this function as we can’t create a 4D plot.) The level sets

however can be drawn as they are spheres x2
1 + x2

2 + x2
3 = c .

x1

x2

x3
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Convex Functions
Differentiable Functions - Visualizing the Gradient

Consider the level set x2
1 + x2

2 + x2
3 = 1. The gradient of the function is

[2x1 2x2 2x3]T and its value at (0.5, 0.5,
√

0.5) is (1, 1, 2
√

0.5), which is

normal to the tangent plane at (0.5, 0.5,
√

0.5).

(0.5, 0.5,
√

0.5)

x1

x2

x3
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Convex Functions
Twice-Differentiable Functions

Definition (Convex Function)

A twice-differentiable function of one variable f : X ⊆ R→ R is convex
iff f ′′(x) ≥ 0 ∀ x ∈ X .

𝑎𝑎

𝑏𝑏 ≥ 𝑎𝑎

Δ𝑥𝑥 Δ𝑥𝑥
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Convex Functions
Twice-Differentiable Functions

In higher dimensions, we make use of the Hessian matrix instead of the
second derivative. But first, we need some additional definitions.

Definition (Positive Definite Matrix)

A symmetric matrix A ∈ Rn×n is called a positive definite matrix and is
denoted as A � 0 if xTAx > 0 for all non-zero x ∈ Rn.

Definition (Positive Semidefinite Matrix)

A symmetric matrix A ∈ Rn×n is called a positive semidefinite matrix and
is denoted as A � 0 if xTAx ≥ 0 for all non-zero x ∈ Rn.

One can similarly define negative definite and negative semidefinite matri-

ces.
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Convex Functions
Twice-Differentiable Functions

Definition (Convex Function)

A twice-differentiable function f : X ⊆ Rn → R is convex iff
∇2f (x) � 0 ∀ x ∈ X .

where

∇2f (x) =


∂2f
∂x2

1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
. . . ∂2f

∂x2∂xn
...

...
. . .

...
∂2f

∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂x2

n


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Convex Functions
Twice-Differentiable Functions

Verifying if the Hessian is positive semidefinite is challenging because we
need to check if xTAx ≥ 0 for all possible non-zero vectors x.

Alternately, A with real eigenvalues is positive definite (semidefinite) iff all
of its eigen values are positive (non-negative).

However, if the Hessian is a diagonal matrix the following proposition can
be used.

Proposition (Positive Definite Matrix)

A diagonal matrix is positive definite (semidefinite) iff all diagonal
elements are strictly positive (non-negative).
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Convex Functions
Twice-Differentiable Functions

Which of the following functions are convex?

1 x2
1 + x4

2 + x2
3

2 x2
1 + x3

2 + x2
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Convex Functions
Strict Convexity

Definition (Strict Convexity)

A function f : X ⊆ Rn → R is strictly convex if ∀ x, y ∈ X , λ ∈ [0, 1],
f (λx + (1− λ)y) < λf (x) + (1− λ)f (y)

Definition (Strict Convexity)

A differentiable one-dimensional function f : X ⊆ Rn → R is strictly
convex iff f (y) > f (x) +∇f (x)T (y− x)∀ x, y ∈ X

Definition (Strict Convexity)

A twice-differentiable function f : X ⊆ Rn → R is strictly convex iff
∇2f (x) � 0 ∀ x ∈ X .
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Lecture Outline

Unconstrained Optimization
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Unconstrained Optimization
Local and Global Minima

Definition (Global Minimum)

x∗ ∈ X is a global minimum of f : X → R iff f (x∗) ≤ f (x) ∀ x ∈ X .

Definition (Local Minimum)

x∗ ∈ X is a local minimum of f : X → R if ∃ ε > 0 such that
f (x∗) ≤ f (x) ∀ x ∈ X ∩ B(x∗, ε).

𝑥𝑥 𝑦𝑦

Both x and y are local minima but only point x is the global minimum of f .
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Unconstrained Optimization
Optimality Conditions

Before learning to minimize a function, we’d first like to characterize the
optimal solutions. We will look at methods to find these solutions much
later.

In other words, we seek answers to the following questions.

I Are there conditions that the optimal solutions satisfy?

I If I gave you a feasible solution, can you tell me if it is
optimal? (Certificate of Optimality)

These type of results are also called optimality conditions. Note that the

two questions are not synonymous. The conditions satisfied by optimal

solutions may be also be satisfied by non-optimal solutions.
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Unconstrained Optimization
Optimality Conditions

Let’s answer these questions for unconstrained problems. (We treat prob-
lems with implicit constraints as unconstrained programs.)

Proposition (Necessary Conditions)

x∗ is a local minimum of a differentiable function f : X ⊆ Rn → R
⇒ ∇f (x∗) = 0

The converse is not true! (Why?) Thus, for x∗ to be optimal it is not
sufficient if∇f (x∗) = 0. To derive sufficient conditions, we need convextiy.

Proposition (Necessary and Sufficient Conditions)

x∗ is a global minimum of a differentiable convex function
f : X ⊆ Rn → R ⇔ ∇f (x∗) = 0

These are also referred to as first-order optimality conditions since they

use the first derivatives.
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Unconstrained Optimization
Remarks on Existence of Optimal Solutions

A function may not have a minimum or may be unbounded. For example,

I ex does not have a minimum (note that infimum exits)

I x is unbounded

However, if the problem is constrained, we could come up with conditions
that guarantee the existence of an optima. E.g.,

Proposition

A continuous function with a compact domain (closed and bounded)
always has a minimum.
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Lecture Outline

Constrained Optimization
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Constrained Optimization
Optimality Conditions

Recall our motivating questions:

I Are there conditions that the optimal solutions satisfy?

I If I gave you a feasible solution, can you tell me if it is
optimal?

Will our first-order conditions that were developed for the unconstrained

case work when there are constraints?
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Constrained Optimization
Optimality Conditions

Consider the following examples

𝑥𝑥∗ 𝑥𝑥∗

If the minimum occurs at an interior point, it appears that we could use
the conditions developed earlier.

But if a corner point is a minima, the gradient need not be zero!
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Constrained Optimization
Optimality Conditions

For constrained problems, there are two ways of characterizing the optimal
solutions.

I The first one is simple, easy to derive and understand, but is not
very helpful.

I The second approach on the other hand requires a new concept
called duality, is more involved, and more insightful!

At the end of the next lecture, we will also see how these two are related.

Lecture 2 Review of Convex Optimization - Part I



41/47

Constrained Optimization
Standard Form

Recall our standard form of an optimization problem

min
x

f (x)

s.t. gi (x) ≤ 0 ∀ i = 1, 2, . . . , l

hi (x) = 0 ∀ i = 1, 2, . . . ,m

Suppose the above problem is a convex program and, as before, assume
that all the functions are differentiable.

Let X denote the set of x that satisfy the inequality and equality and other
implicit constraints.
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Constrained Optimization
Normal Cone

Definition (Normal Cone)

Let X ⊆ Rn, the normal cone of X at x is defined as

NX (x) = {z ∈ Rn : zT (y − x) ≤ 0, ∀ y ∈ X}

For the purpose of the following illustration, assume x is the origin.

𝒙
𝒛

𝒩𝑋(𝒙)

𝒚 − 𝒙

𝑋

Vectors belonging to this set are
called normal vectors to X at
x. They make a non-acute an-
gle with (y − x) for all y ∈ X .

What is the normal cone at an
interior point?
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Constrained Optimization
Normal Cone

 
𝑋 

𝒩𝑋 𝒙 = {𝟎} 

𝒩𝑋(𝒚) 

𝒩𝑋(𝒛) 

𝒚 

𝒛 

𝒙 
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Constrained Optimization
Optimality Conditions

Proposition (Necessary and Sufficient Conditions)

x∗ is an optimal to the convex program min f (x) s.t. x ∈ X iff
−∇f (x∗) ∈ NX (x∗)

Consider a function of two variables with feasible region X and level sets
as shown below. Recall that the gradient is orthogonal to the level curves.

𝒳

−𝛻𝑓(𝑥∗)

𝛻𝑓(𝑥∗)

𝑥∗

For interior optima, the normal cone is {0}, hence ∇f (x∗) = 0!
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Constrained Optimization
Optimality Conditions

Proposition (Necessary and Sufficient Conditions)

x∗ is an optimal to the convex program min f (x) s.t. x ∈ X iff
−∇f (x∗) ∈ NX (x∗)

Proof.

(⇐) Note that since f is convex, the following is true,

f (y) ≥ f (x∗) +∇f (x∗)T (y − x∗)∀ y ∈ X

If −∇f (x∗) ∈ NX (x∗),

∇f (x∗)T (y − x∗) ≥ 0 ∀ y ∈ X

Therefore, f (x∗) ≤ f (y)∀ y ∈ X and hence x∗ is optimal.

(⇒) Exercise.
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Constrained Optimization
Optimality Conditions

While the normal cone version of the optimality conditions −∇f (x∗) ∈
NX (x∗) is simple, it is not that useful.

Constructing the normal cone involves finding vectors which make a non-
acute angle with every (y − x∗), where y ∈ X !
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Your Moment of Zen
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