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Previously on Traffic Network Equilibrium...

Let’s extend our definition of a graph to include a subset of nodes from
which trips originate or end. These nodes are called zone centroids and
can be actual junctions or artificial nodes.

If zone centroids are artificially cre-
ated, they are connected to nearby
streets using artificial links called
centroid connectors.

. It is assumed that artificially created
centroid connectors can be traversed
instantaneously.
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Previously on Traffic Network Equilibrium...

The demand information for all OD pairs is commonly referred to as OD
matrix or trip tables.

The number of person trips are computed from the first two steps of the
four-step process. In the third step, these trips are assigned to different
modes (car, bus, two-wheeler etc.) resulting in a trip table for each mode.

But for equilibrium analysis, we assume that demand comprises of only
passenger cars. The demand of other types of vehicles are adjusted by
factors called passenger car units (PCUs) that reflect their sizes relative
to that of a car.
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Previously on Traffic Network Equilibrium...

Can we reverse engineer a convex function such that the KKT con-
ditions are equivalent to the Wardrop equilibria?

Martin Beckmann, C. B. McGuire, and Christopher Winsten in 1956

discovered such a function in their seminal book Studies in the Eco-
nomics of Transportation.

This function is commonly referred to as the Beckmann function.
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Previously on Traffic Network Equilibrium...

Suppose 7,(y) denotes the travel time on path p given a path flow vector
y. From the KKT conditions, eliminating A, for all (r,s) € Z2, p € Py,

7po(y) > prs
Yp (TP(Y) - :U'rs) =0

From the above equations, p,s is the length of the shortest path.

If yp > 0, then path p must be shortest. If y, = 0, the travel time of path
p must be at least u,s. Voilal Wardrop Principle.
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Elastic Demand
Convex Optimization Formulation
Solution Methods
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Elastic Demand
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Elastic Demand

So far, we assumed that the demand between all OD pairs is fixed. This
assumption is reasonable when most travelers are regular commuters.

However, demand may sometimes depend on some supply-side conditions.

Suppose we modify the network by building new links. This may
induce new demand (in addition to route shifting).

Individuals may have the option to select working times or to work
from home. Hence, depending on the congestion levels (or tolls),
one may choose to shift their departure times or to not travel.
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Elastic Demand

To model this phenomena, assume that the demand between an OD pair
is a function of the time it takes to travel between O and D.

This is true in other markets as well. The demand for a good is a function
of its price. Hence, as the travel time between an OD pair decreases, the
consumption (demand for travel) increases.

Suppose it takes jis min to travel between (r,s) € Z2. Let Ds(jrs)
represent the demand function which gives the number of users who
choose to travel between (r,s).
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Demand Functions

What should the shape of D,s(us) be?
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We could assume it to be non-increasing but we'll require it to be strictly

decreasing so that it's inverse exists.
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Elastic Demand

The inverse demand function takes the number of travelers between the
OD pair as input and provides the time to travel between O and D.

200 100 log(200/dys)

Mathematically, if d,s is the demand and p,s denotes the travel time,
,Dgl(drs) = Hrs-
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Elastic Demand

Consider the demand function Dys(tirs) = 50— 3 115 and its inverse Dt (d,s) =

100 — 2ds
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We will let the demand function D take negative values so that its inverse
exists. Negative demand values can be avoided by setting d,s = DT (u,s) =
max{D(us),0}
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Lecture Qutline

Convex Optimization Formulation
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Convex Optimization Formulation

Let's analyze the following example. Assuming both paths are used, what
are the equilibrium flows?

10 +x

0 -um(3 o

20 +x

The Wardrop principle in this setting applies to all users who decide to
travel.
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Introduction

10 +x

01D (s

20+ x

The equilibrium demand and link flows can be calculated using the follow-
ing equations.

10+ =20+ =p
d=50—pu
X1 +x=d
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Convex Optimization Formulation

With link flows as variables, we derived the Beckmann formulation for
computing an equilibrium. Can we construct a similar formulation using
link flows and demands as variables?
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Convex Optimization Formulation
Recall that the demand was defined as d,s = D™ (pu,s) = max{D(us), 0}

40

40
50— 3 s 50— 3 purs

20 20

Drs(/-’ws)

50 100 150

1u‘fS

50 100

1u’fS

An alternate way of expressing the above relationship is

drs > 0
drs > Drs(ﬂrs)
ds>0=ds = Drs(,urs)

Déja vu?
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Convex Optimization Formulation

The conditions
ds >0

drs > Drs(,urs)
drs >0= drs - Drs(,“rs)

can be recast in terms of the inverse demand functions as follows
ds >0
Hrs 2 Drzl(drS)
dis >0 = D1 (dys) = pirs
or equivalently as
ds >0
firs 2 Dyt (drs)
drs(Ds*(drs) = purs) = 0
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Convex Optimization Formulation

The inverse demand functions have units of time which will prove useful
in formulating an optimization model as we will see shortly.

The optimal solution must satisfy the following conditions:

yp =0 Vpe P

To(Y) > firs V(r,s)EZz,pE P,

Yo (Tp(y) = tirs) =0 V(r,s) € Z? pe Py

ds >0 V(r,s) € Z?

firs > Dy (drs) V(r,s) e 22

dis (D' (dys) — prs) =0 V(r,s) e Z?

Can you reverse engineer an objective from these equations?
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Convex Optimization Formulation

The equilibrium solution for the elastic demand problem can be obtained
by solving the following convex program.

min E / pep&ijypt--(w)dw— g drsD 1(w)dw
) rs
0

y,d
(i.j)eA (rs)ez2”0

st. Y yp=dsV(r,s)€ 2
PEP;s

Yp>0VpeP
dis >0V (r,s) € Z2

Note that both terms in the objective have units of time. Write the KKT
conditions for the above model.
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Beckmann-like Model

> PS,""Y drs
oy dame) = 3 [T @ do— 3 [T 0w

(i,))EA (r,s)€22

+Z)‘P(_}’p)+ Z Ups(—drs) + Z prs | drs — Z}’p

peEP (r,s)€Z? (r,s)€Z? PEPs
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Convex Optimization Formulation

Primal feasibility:
Z Yo =ds ¥ (r,s) € Z°

PEPs
y»=>0VpePr
ds >0V (r,s) € Z°

Dual feasibility:
A >0VpeP

Urs > 0V (r,s) € Z°

Complementary Slackness:
Apyp =0VpeP

Visdrs = 0V (r,s) € Z°
Gradient of the Lagrangian vanishes:
> 8ti(xg) — Ao — s =0V (r,5) € 2%, p € Py
(i-f)eA
~DM(drs) — Vs + s = 0V (r,s) € Z°
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Convex Optimization Formulation

As before, eliminating Ap, for all (r,s) € Z2, p € P, we get

TP(Y) > hrs
Yp (Tp(y) — 11rs) =0

These two imply the Wardrop principle. Eliminating v, for all (r,s) € Z?

Mrs > Drzl(drs)
drs (Dr_sl(drs) - ,Ufrs) =0

Hence, if the demand between an OD pair is strictly positive D;;}(ds) =
wrs- Else, if it is zero, the shortest path time is greater than or equal to
time value at which no users are willing to travel between O and D (i.e.,
7o(y) > s > D(0)).

23/32



Solution Methods
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Solution Methods

When the demand is fixed, the set of feasible link flows is convex. Are the
link flows and demands bounded when the demand is elastic?

The optimization model discussed earlier is a convex program. (Why?)
Thus, using MSA or FW we can update both the link flows and OD de-
mands (x,d) within each iteration.

Some food for thought...

Search direction

Terminating criteria
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Solution Methods

Before performing an all-or-nothing assignment, we need to compute the
shortest paths between each OD pair.

Suppose the shortest path labels in iteration k are uk. Set the target
demand to dX = Dt (1X) and denote the vector of demands by d*.

With this demand, perform an all-or-nothing assignment and represent the
resulting link flows using X

XKL = K 4 (1 — me)x*

dk+1 _ ’f]kak 4 (1 _ nk)dk

Note: xk, %, xk*1 are the flows that correspond to the demands d¥, d¥, d*+?
respectively.
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Solution Methods

We could use Relative gap and AEC as convergence measures but they do
not involve the OD demands.

Hence, at each iteration k, we define the total misplaced flow (TMF) as

Y IDE) —dil= > ldg - dg]

(r,s)€Z? (r,s)€Z?

The algorithms are terminated when both TMF and Relative gap/AEC are
less than certain thresholds.
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Solution Methods

MSA(G)

k+ 1 .
Find a feasible %, d

while Relative Gap > 10=* or TMF > € do
X %)A( +(1- %)x
d« 2d+(1-1)d
Update t(x)
X0
for r € Z do
DuKsTRA (G, r)
for s € Z,(i,j) € pj do
de A D:E(/f:s)
;(,'j < %U + drs
end for
end for R
TMF «+ Z(,?S)GZQ |drs — dis|
Relative Gap <~ TSTT/SPTT —1
k< k+1
end while

x
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Solution Methods

In the FW algorithm, just as with the fixed demand case, we try to find
a step size that minimizes the objective along the line between (x,d) and

(%,d).

n%+(1—n)xji ndrs+(1—n)d
f(n) = Z / ' ' tij(w) dw — Z / ,sl(w)dw

(i.j)eA” O (rs)€Z2

First-order optimality conditions for interior 17 imply that '(n) =0, i.e.,

> ti(mH L)) (G—xi)— D Dat (nds + (1= n)ds) (=) =0

(ij)EA (r,5)€Z2

Bisection or Newton's method can be used to compute the solution to the
above equation.
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Solution Methods

FRANK-WOLFE(G)

k<+1 .
Find a feasible %, d

while Relative Gap > 10~% or TMF > ¢ do
if k=1 then <+ 1else n <« BISECTION(G,x,d,)“(,a)
X nx+ (1 —n)x
d < nd+(1—n)d
Update t(x)
x<0
for r € Z do
DuKSTRA (G, r)
for s € Z,(i,j) € pj do
drs = D5 (1fs)
;(,'j < ;(U + drs
end for
end for R
TMF «+ Z(("S)622 |drs — dis|
Relative Gap <— TSTT/SPTT —1
k+— k+1
end while
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A Parting Note

» The elastic demand model is definitely more realistic than the fixed
demand case.

» But estimating demand and inverse demand functions is a challenge
and would require elaborate surveys.
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