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Previously on Traffic Engineering

Let us extend the earlier example to connect the

time-mean and space-mean speeds. @ @ @ ~
)

Imagine a scenario with multiple lanes 1, ..., C each g

with uniform traffic with capacity g;, density k;, and |8 - -

speeds v;. 8 B

Let g = >, gi be the total flow and k = ), k; be
the total density.

Let ; = gi/q and f/ = k;/k be the proportion of
observing a certain colour of vehicle across time and
space.

ap a» ad

g
8z

&
<

For each lane, we can write g; = k;v; since the headway is g; and spacing
is V,'/q,'.
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Previously on Traffic Engineering

Time-mean and space-mean speeds for this setting can be written as
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Notice from the definition of the space-mean speed that
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Hence, we can write g = kv for non-homogeneous traffic but the speed v
in this expression is the space-mean speed.
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Previously on Traffic Engineering

The following is a picture from Ni (2016) with one year of traffic data from
a city in US aggregated into 5-minute intervals.
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The density values are calculated from the volume and speed measure-
ments.
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Conservation Equation
LWR Model
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Lecture Qutline

Conservation Equation
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Conservation Equation

/ The number of vehicles cross-
ing AB is gAt. Likewise, the
/4 N number of vehicles in AD is
/ o / kAx.
f g Flow,
: //// .

Time

Space

In the limiting case, these two
terms must be equal. Hence,
gAt = kAx = q = kv.
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To be more precise with the notation, we can write

q(t, x) = k(t,x)v(t,x)
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Conservation Equation

There is another useful relationship between volume (v) and density (k)
that can be derived using the notion of cumulative counts.

A /‘/
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Suppose we number cars in the order in which they appear. Define N(t, x)
as the car number of the trajectory closest to the point (t,x). These
functions are also referred to as Moskowitz functions.
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Conservation Equation

Under the continuum approximation assumption, we treat N(t,x) as a
continuous function. Hence, we can define its partial derivatives.

‘//Z 3
0 ON(t,x)
“ox~ KEx)
ON(t, x)
t —
B q(t, x)

Space

Time
For a continuous function, we can write

OPN(t,x)  9?N(t,x)
otox  OxOt
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Cumulative Counts

Cumulative number of vehicles, n
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Cumulative number of vehicles, n
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Conservation Equation

Plugging in the expressions for the partial derivatives, we get the following
PDE that must be satisfied by the flow and density functions

ok Oq
ot T ox Ox =0

A shorthand way of writing this is k; + g, = 0

This PDE is also called the “Conservation Law" since it can be derived in
a different way by assuming that vehicles do not appear or disappear inside
a small infinitesimal region.
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Conservation Equation

Suppose that from t; to tp, a total of AN; and AN, vehicles cross locations
x1 and xp. Suppose At =ty — t7.

Traffic flow
49— @ —
Xy Ax X
AN AN,
q1 = At g2 = At

Assuming that the traffic densities at t; and t, are k; and ko, what is
the change in the number of vehicles in terms of the flow and density
variables?
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Conservation Equation

The change in the number of vehicles in the section in terms of the flow
variables are

AN = AN, — ANy = At — g1 At = AgAt
In terms of the density,
AN = ki Ax — koyAx = —AkAx
From the above equations,

AgAt + AkAx =0

Ag Ak
i A
Ax + At
Letting Ax — 0 and At — 0,
dqg 0Ok
=0
Ox o ot
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Conservation Equation

According to Green's theorem, if L and M are functions of (¢, x) and have
continuous partial derivatives

%(Ldt+ Mdx) // (8/\/’ - 8L> dtdx i
Ox o 4

Setting L = g and M = —k,

%C(th kdx) // <6'k + X) dtdx

Since the gradient of N(t,x) is (g, —k),

jf(th ~ kdx) = N(ts, %) — N(t1, 1)
C

which is 0 when C is closed. Since, this is true for every closed C and A,
atk + 3Xq == 0
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Conservation Equation

So far, we have two equations that connect traffic flow variables:
q = kv
ok aq _
5% tax=0

To fully describe these three variables over the domain of interest, it is
necessary to have a third equation.
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LWR Model
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Introduction

The Lighthill Whitham Richards (LWR) model developed in the 50s com-
bines the conservation equation with fundamental diagrams q = (k).

FD of first order models.
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LWR Model

Having the fundamental diagram now gives us three sets of equations,
which when solved will give the speed, density, and flow in the domain of
interest.
q = kv
ok | 98q _
ot tax =0
= £(K)

Plugging the fundamental diagram equation in the conservation law, we
get a PDE purely in terms of the density

ok  Of(k)

ot T ox

ok ., 0k

This equation is also called first-order hyperbolic conservation law.

=0

0
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Fundamental Diagram

Most commonly used fundamental diagrams are triangular, and trape-
zoidal. The parameters of these shapes have to be calibrated from data.

Flow (q)
Flow (q)
Flow (q)
K]

Density (k) Density (k) Density (k)
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LWR Model

Why do we need a macroscopic model when microscopic models exist?

Microscopic models are ideal for fine-grained traffic analysis for
small networks or corridors. They scale badly for larger networks.

Macroscopic models are faster to run and hence can be embedded
within other frameworks such as dynamic traffic assignment more
easily.

Some of the questions that can be addressed with macroscopic models
include
For known initial conditions and inflows, how does traffic evolve
over time?
Where do bottlenecks occur?
How does congestion spill back, shocks propagate, and how far do
queues go?
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LWR Model

Solving the PDE requires some knowledge of the density function. This is

prescribed in one or more of the following ways:

T Downstream Boundary Condition

Internal Condition

Space

Initial Condition

Upstream Boundary Condition

Time

Initial Condition
Boundary Condition

Internal Condition
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LWR Model

In many cases, given some initial conditions, one can solve the PDE exactly
to get the value of density at all points in the domain.

Zero density

Max density
Fixed bottleneck

Moving bottleneck

x(m)

X (m)

Critical dens

o 0  Zero density

time (s)

o
In this course,

we will restrict our attention to first-order macroscopic
models. They have some limitations such as infinite accelerations, which
are handled using second-order macro models.
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LWR Model

The LWR models described so far is set in Eulerian coordinates. Using a
change of variables, it is possible to describe traffic in Lagrangian coordi-
nates. This is sometimes easier to solve.

The variables of interest in Lagrangian coordinates are spacing s and ve-
locity v instead of density k and flow gq.

The independent variables are (t, N). That is, we track the individual
vehicles over time instead of (¢, x).
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LWR Model

12

—’
/7 : From the space-time trajectories, we
can write
i ax(t, N)
t N)= —~" 7~
- v(t N) ot
t
ox(t, N)
t,N)= ——
S( I ) aN

Time

o wans

Space

Assuming x(t, N) is continuous,
O?x(t,N)  8x(t,N)
OtON  ONOt

which implies
=0

Os(t,N) | dv(t.N)
ot oN
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Lagrangian Coordinates

We still need the fundamental diagram to write this as an equation in one
variable.

To this end, the spacing-speed relationship is used, i.e., v = f(s).
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Your Moment of Zen
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