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Previously on Traffic Engineering

The variables used in CTM are:

I yij(t): Denotes the flow from cell i to cell j in [t, t + ∆t] ≡ [t, t + 1].

I ni (t): Number of vehicles in cell i at time t

I Ni : Maximum number of vehicles that can fit in cell i .

𝑛ℎ(𝑡) 𝑛𝑖(𝑡) 𝑛𝑗(𝑡)
𝑦ℎ𝑖(𝑡) 𝑦𝑖𝑗(𝑡)

𝐶𝑒𝑙𝑙 ℎ 𝐶𝑒𝑙𝑙 𝑖 𝐶𝑒𝑙𝑙 𝑗

Conservation of flow requires

ni (t + 1) = ni (t) + yhi (t)− yij(t)
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Previously on Traffic Engineering

Remember that these iterates give us the flow between cells on a link.

𝑛1(𝑡) 𝑛2(𝑡) 𝑛3(𝑡)
𝑦12(𝑡) 𝑦23(𝑡)

𝐴 𝐵

𝑛4(𝑡) 𝑛5(𝑡)
𝑦34(𝑡) 𝑦45(𝑡)

In fact, one can think of cells as miniature links in series and notice that
the sending and receiving flow expressions are captured in what we derived.

yij(t) = min

{
ni (t), qmax∆t,

(
Nj − nj(t)

)
w

vf

}

yij(t) = min

{
min

{
ni (t), qmax∆t

}
,min

{
qmax∆t,

(
Nj − nj(t)

)
w

vf

}}
The first minimum is the sending flow of cell i and the second minimum
is the receiving flow of cell j .
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Previously on Traffic Engineering

The routing decisions are captured using proportions just as done in the
diverge case.

At each node, we keep track of an allocation or routing matrix Pi (t) of
size |Ai | × |A−1

i | which specifies what fraction of travelers on an outgoing
link come from different incoming links.

Let Ai and A−1
i be the adjacency and the inverse adjacency list. The

elements of the matrix are pij,hi (t) and satisfy
∑

j pij,hi (t) = 1 ∀ h ∈ A−1
i
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Previously on Traffic Engineering

Suppose the sending flows on the incoming links be denoted by Shi (t) and
receiving flows by Rij(t).

Let the actual flows on the incoming and outgoing links be represented by
yhi and yij , respectively.

Then, the following constraints must hold.

yhi (t) ≤ Shi (t) ∀ h ∈ A−1
i

yij(t) ≤ Rij(t) ∀ j ∈ Ai

How are the y variables related to the allocation matrix?

yij(t) =
∑

h∈A−1
i

pij,hi (t)yhi (t)
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Previously on Traffic Engineering

Using this optimization problem, derive the results that we saw earlier for
a pair of links in series and a simple merge and a diverge.

max
∑
j∈Ai

yij(t)

s.t. yij(t) =
∑

h∈A−1
i

pij,hi (t)yhi (t) ∀ (i , j) ∈ A

yhi (t) ≤ Shi (t) ∀ h ∈ A−1
i

yij(t) ≤ Rij(t) ∀ j ∈ Ai

yij(t) ≥ 0 ∀ (i , j) ∈ A

Does this model handle scenarios where the sending and receiving flows
are zero in a merge and diverge?

CTM has also been extended to signalized intersection with priority rules.
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Lecture Outline

1 Dynamic User Equilibrium

2 Time-Dependent Shortest Paths

3 Shifting Flows
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Lecture Outline

Dynamic User Equilibrium
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Dynamic User Equilibrium
Introduction

Dynamic Traffic Assignment: In the last semester, we studied static
traffic assignment models in detail. They are mathematically attractive
but they do not represent time dynamics.

I In reality, users depart at different times.

I Traffic builds and dissipates on a link in a more complex fashion and
can create shockwaves. None of this is modeled in static TAPs.

Dynamic traffic assignment is an extension of the static approaches in
which macroscopic traffic flow models are used instead of link delay func-
tions.
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Dynamic User Equilibrium
Definition

The Wardrop principle in this setting states that ‘all users departing at
the same time have equal and minimal travel times’.

One can also formulate models in which users are allowed to switch their
departure times.

However, existence and uniqueness of DTA is extremely difficult to es-
tablish because of non-linearity and discontinuities of the delay functions.
DTA is built using a simulation framework and empirically most network
converge.
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Dynamic User Equilibrium
Overview

The equilibrium procedure is similar but modifications are required at each step.

Update and Fix 
Link Costs

Compute 
Shortest Paths

Shift Travelers to 
New Paths

I Update and Fix Link Costs: This is carried out using simulators.

I Compute Shortest Paths: Since link delays vary across time, we now
have to calculate time-dependent shortest paths.

I Shift Travelers: This step is typically done using MSA or gradient
projection-like methods. Computing travel time derivatives is challenging.
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Dynamic User Equilibrium
Challenges

The microscopic and macroscopic models that we saw so far allow us to
compute the travel times on the links in the network over time.

Given the departure times of the travelers in the network and their path
choices, the goal is to find the travel times that they experience (as
opposed to the instantaneous time).

Note that the dynamic traffic assignment models are more demanding.
You need to know the demand distribution over time and more details on
the road geometry (backward wave speeds, capacity, etc.)
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Lecture Outline

Time-Dependent Shortest Paths
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Time-Dependent Shortest Paths
Introduction

The traffic flow models that we saw so far tell us the travel time on each
link for different departure times at the tail node given a fixed set of path
flows.

Time

Sp
ac
e

Time
Sp
ac
e

𝑦(𝑡)

We’ll now find the time-dependent shortest paths and shift travelers from
longer paths to shorter ones for each departure time step.
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Time-Dependent Shortest Paths
FIFO Networks

It is useful to distinguish networks as first-in-and-first-out (FIFO) or non-
FIFO as the algorithms for finding shortest paths are slightly different.

FIFO networks satisfy the property if t < t ′ then t + cij(t) < t ′ + cij(t
′).

That is if A enters a link before B, A will arrive at j before B.
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Time-Dependent Shortest Paths
FIFO Networks

An important aspect to consider in time-dependent graphs is waiting.

Some graphs allow travelers to wait at intermediate nodes and waiting may
also be optimal. Can you think of an example?

In FIFO graphs, waiting will only increase the travel time. Hence, one can
ignore it and a Dijkstra’s-like algorithm can be used.
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Time-Dependent Shortest Paths
Modified Dijkstra’s Algorithm

Suppose we depart from an origin r at t0

Algorithm 1 Modified Dijkstra’s Algorithm(G , r , t0)

Step 1: Initialize
S = ∅, S̄ = N
µr = t0, πr = r
µi =∞, πi = −1∀ i ∈ N\{r}

Step 2:
while S̄ 6= ∅ do

i = arg minj∈S̄ µj

S = S ∪ {i}, S̄ = S̄\{i}
for j : (i , j) ∈ A do

if µj > µi + cij(µi ) then
µj = µi + cij(µi )
πj = i

end if
end for

end while
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Time-Dependent Shortest Paths
Example

Is the following network a FIFO graph?

1

2

3

4

10

2 + 𝑡2 + 𝑡

5

max(8 − 𝑡/2, 1)

Find the shortest paths to the other nodes if we depart from node 1 at

t0 = 4.
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Time-Dependent Shortest Paths
Example

What is the instantaneous shortest path in this network if we depart from
node 1 at t0 = 4?

1

2

3

4

10

2 + 𝑡2 + 𝑡

5

max(8 − 𝑡/2, 1)
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Time-Dependent Shortest Paths
General TDSP

In general networks, we can construct a time expanded version of the
graph and solve for the optimum labels with minimal modifications to the
algorithms we saw earlier.

We maintain a copies of each node for every time step and connect arcs

between nodes to reflect the time-varying travel times. Is the above figure

a FIFO graph?
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Time-Dependent Shortest Paths
General TDSP

Instead of a single node label µi , we not have a node label for every
departure time µt

i . Equivalently, we may assume that we have a node
label for every node in the time-expanded graph.

Solving a regular shortest path problem in the time-expanded graph will

give us the TDSPs. Should we maintain a SEL or can we do better?
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Time-Dependent Shortest Paths
General TDSP

Time-expanded graphs are acyclic and hence we scan nodes in increasing
order of time.

Algorithm 2 TDSP(G)

Step 1: Initialize
µt0
r = 0, πt0

r = r
µt
i =∞, πt

i = −1 ∀ i ∈ N\{r}, t 6= t0

Step 2:
for t ∈ {1, 2, . . . ,T} do

for Arcs from (i , t) to (j , t′) do

if µt′
j > µt

i + cij(t) then

µt′
j = µt

i + cij(t)

πt′
j = i

end if
end for

end for
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Lecture Outline

Shifting Flows
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Shifting Flows
Updating Link Travel Times

Recall the space-time plots that we constructed to motivate the traffic flow
models.

Time

Sp
ac
e

1 2
3

4
5
6
7

8
9

10

11

We can redraw this in a different manner only considering cumulative
counts at the upstream and downstream ends of the link.

Here, we assume that the time-dependent demand is known and we carry

out a network loading procedure using CTM or LTM.
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Shifting Flows
Updating Link Travel Times

These are the plots of the cumulative count functions at the upstream and
downstream ends of a link N(0, t) and N(L, t).

Time

N

Upstream

Downstream

How do you find the travel time on the link for different departure times?
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Shifting Flows
Updating Link Travel Times

We can compute the time-dependent path travel times by piecing link
travel times.

Time

N

Upstream

Downstream

Time

N

Downstream

Upstream
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Shifting Flows
Method of Successive Averages

After time-dependent travel times are computed for a given path flow
solution, we shift flow from longer paths to shorter ones just like in static
traffic assignment.

We keep track of a path flow matrix for different departure times Y . Imag-
ine a network with a single OD pair.

Y =


y1(1) y2(1) . . . yP(1)
y1(2) y2(2) . . . yP(2)

...
...

. . .
...

y1(T ) y2(T ) . . . yP(T )


The rows represent departure times and the columns indicate different

paths between the OD pair.
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Shifting Flows
Method of Successive Averages

From CTM and TDSP, we also know the travel time (and the shortest) on
the paths for different departure times.

Y =


τ1(1) τ2(1) . . . τP(1)
τ1(2) τ2(2) . . . τP(2)

...
...

. . .
...

τ1(T ) τ2(T ) . . . τP(T )


We then find the all-or-nothing assignment by loading all travelers on the
time-dependent shortest path Ŷ . Finally, the path flows are iteratively
updated using

Y k+1 = ηk Ŷ
k + (1− ηk)Y k

The step size is typically set to 1/k where k is the iteration number.
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Shifting Flows
Method of Successive Averages

One can mathematically prove that MSA converges to the equilibrium
solutions in the case of static traffic assignment.

However, in DTA we do not have an equivalent convex optimization prob-
lem to make use of and hence convergence is not theoretically guaranteed
but empirically most networks exhibit convergence (sometimes after days).

Convergence can be measured using measures similar to relative gap and

average excess cost.
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Shifting Flows
Gradient Projection

Recall the path flow update mechanism for gradient projection

∆Y (t) = min

{
Yp(t),

τp(t)− τp∗(t)∑
(i,j)∈Â t

′
ij

}

In DTA, we perform similar updates for every departure time step. The

path travel times are computed as shown earlier, but we still need the

travel time derivatives.
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Shifting Flows
Gradient Projection

Travel time derivatives on links depend on where we are in the fundamental
diagram. If we are in the free-flow region, adding an extra vehicle will not
increase travel time.

But if we are in the congested regime, adding an extra vehicle will increase
the travel time. The question is by how much? 1/q where q is the flow or
if you are using CTM, we use 1/y variables.

One needs to be careful of the time steps at which the derivatives are
computed.
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MSA and GP
Gradient Projection

Can we identify if there is a queue or not using the cumulative counts
figure?

Time

N

Upstream

Downstream

After computing derivatives, we shift flows and repeat the process of run-

ning CTM, recalculate time-dependent shortest paths, flow shifts and re-

peat.
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Shifting Flows
A Parting Note

DTA does model travel demand, traffic congestion, and route choices at
a very fine scale. Does this imply that it is a better model?
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Additional Reading
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Analysis. (Part III)

Chiu, Y. C., Bottom, J., Mahut, M., Paz, A., Balakrishna, R., Waller, S., &
Hicks, J. (2011). Dynamic traffic assignment: A primer (Transportation Re-
search Circular E-C153).

Peeta, S., & Ziliaskopoulos, A. K. (2001). Foundations of dynamic traffic assign-
ment: The past, the present and the future. Networks and spatial economics,
1(3), 233-265.
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Your Moment of Zen
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