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Previously on Mathematics for Engineers

A random variable is an alternate way of constructing events. Defining
random variables allows us to translate events of interest into probabilities
more easily.

Definition (Random Variable)

A real-valued random variable is a function or mapping X : Ω→ R such
that for all S ⊂ R, X−1(S) ∈ F .

Ω

ℝ

*Technically, there are some restrictions on S just like valid events, but we’ll ignore those details.
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Previously on Mathematics for Engineers

The CDFs can be differentiated to get the PDFs of the sums.

fZ (z) =
d

dz

∫ ∞
−∞

FX (z − y)fY (y)dy

=

∫ ∞
−∞

fX (z − y)fY (y)dy

Use this expression to derive the PDF of the sum of two uniforms between 0
and 1. If z ∈ [0, 1], fZ (z) =

∫ z

0
dy and if z ∈ [1, 2], fZ (z) =

∫ 1

z−1
dy . Thus,

fZ (z) =


z if 0 ≤ z ≤ 1

2− z if 1 < z ≤ 2

0 otherwise
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Previously on Mathematics for Engineers

Suppose X and Y are two standard normal random variables. What is the
distribution of Z = X + Y ? Using the earlier formula,

fZ (z) =

∫ ∞
−∞

fX (z − y)fY (y)dy

=

∫ ∞
−∞

1√
2π

e−
1
2 (z−y)

2 1√
2π

e−
1
2 y

2

dy

which when simplified leads to

1

2
√
π
e−

1
4 (z)

2

which is the PDF of a normal random variable with mean 0 and variance
2.
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Previously on Mathematics for Engineers

Claim

Suppose X1, . . . ,Xn denotes a vector of random variables such that
|E(Xi )| <∞. Then,

E(X1 + . . .+ Xn) = E(X1) + . . .+ E(Xn)

Note that for this result we do not need the random variable to

I Be independent

I Have the same distribution

The variance of a sum of random variables can be written as

V

(
n∑

i=1

Xi

)
=

n∑
i=1

n∑
j=1

Cov(Xi ,Xj)
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Previously on Mathematics for Engineers

Claim (Markov’s Inequality)

Let X be non-negative and assume E(X ) is finite. For any t > 0,

P(X > t) ≤ E(X )

t

Claim (Chebyshev’s Inequality)

Let X be a random variable with finite µ and σ2. For any t > 0,

P
(
|X − µ| ≥ t

)
≤ σ2

t2
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Lecture Outline
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2 Limit Theorems
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Lecture Outline

Measuring Convergence
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Measuring Convergence
Introduction

We have the interpreted expected value of a random variable as the average
of the realizations when we perform a large number of experiments. For
instance, in the case of rolling a die and tossing a coin

Note that the above pictures indicate the convergence of two different
quantities. The expected value in one case and the probability of H in the
other.

These type of results are also called the Law of Large Numbers (LLN) and
it will be the first limit theorem that we will see.

Lecture 9 Limit Theorems



10/32

Measuring Convergence
Introduction

Consider the problem of measuring the length of an object. Measurement
errors are common and hence every time we use a certain technique we
can get different results.

The difference between the true and the measured value indicates the errors
and the sum of all errors tends to have a normal distribution.

Laplace noticed that the histograms of the sums such as binomial distri-
butions had a certain resemblance to the normal distribution.
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Measuring Convergence
Introduction

The figure below shows the PDF of sums of uniform and binomial random
variables Zn = X1 + X2 + . . .+ Xn.

This resemblance to the normal distribution is captured in the second limit
theorem that we will see called the Central Limit Theorem (CLT).
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Measuring Convergence
Sequence of Reals

A sequence of real numbers is represented as (xn)n∈N or {xn}n∈N or simply
as (xn) or {xn}.

Finding the limits of a sequence for large n is a fundamental question in
real analysis. For example, the sequence xn = 1/n converges to 0 as n
goes to ∞.

Definition

A sequence {xn} is said to converge to a real number x , and is denoted
as xn → x , if for every ε > 0 ∃N > 0 such that |xn − x | < ε for all n ≥ N

We also write this as limn→∞ xn = x .
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Measuring Convergence
Sequence of Reals

We can try to extend these ideas to sequences of random variables but
then probabilities, random variables, PMFs, and PDFs are all functions!

We would like to see if a sequence of random variables X1,X2, . . . gets
closer to a random variable X as n → ∞. To measure ‘closeness’ new
notions of convergence are needed.
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Measuring Convergence
Example 1

Consider the tossing of a single unbiased coin. Suppose, we define random
variables X1,X2, . . . on this sample space Ω = {H,T} as follows

Xn(ω) =

{
1 if ω = H
1

n+1 otherwise

I Are the random variables X1,X2, . . . independent and identically
distributed (iid)?

I Sketch the PMF and CDF of these random variables.

I Is the support of the sequence of the random variables same or
different?

What do these random variables appear to converge to, i.e., if Xn → X .
What is X?
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Measuring Convergence
Example 2

Instead, consider tossing a coin multiple times and let X1,X2, . . . be defined
as follows:

Xn(ω) =

{
1 if ω = H

0 otherwise

I Are the random variables X1,X2, . . . independent and identically
distributed (iid)?

I Sketch the PMF and CDF of these random variables.

I Is the support of the sequence of the random variables same or
different?

What do these random variables appear to converge to, i.e., if Xn → X .
What is X?
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Measuring Convergence
Example 3

Consider the tossing of multiple coins. In the nth toss, we toss a biased
coin with H probability 1 − 1

n and T probability of 1
n . If each X1,X2, . . .

are defined as

Xn(ω) =

{
1 if ω = H

0 otherwise

I Are the random variables X1,X2, . . . independent and identically
distributed (iid)?

I Sketch the PMF and CDF of these random variables.

I Is the support of the sequence of the random variables same or
different?

What do these random variables appear to converge to, i.e., if Xn → X .
What is X? Note that the probability space is changing in this example.
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Measuring Convergence
Convergence in Distribution

Definition (Convergence in Distribution)

A sequence of random variables {Xn} converges to X in distribution and

is denoted as Xn
d−→ X or Xn

D−→ X if

lim
n→∞

FXn(x) = FX (x)

for all x where FX (x) is continuous.

The above limit is easy to interpret as for a given x , FX1(x),FX2(x), . . . is
a sequence of real numbers.

Hence, we can use the ε definition to say that for every x and a given
ε > 0∃N > 0 such that |FXn(x)− FX (x)| < ε∀ n ≥ N.

Convergence in distribution is also called convergence in law or we say
Xn converges weakly to X .
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Measuring Convergence
Convergence in Distribution

Consider the Bernoulli random variable from Example 2.

Xn(ω) =

{
1 if ω = H

0 otherwise

It is clear that Xn
d−→ X , where X is another Bernoulli random variable

defined like Xn. Instead, imagine another random variable Y

Y (ω) =

{
1 if ω = T

0 otherwise

Does Xn
d−→ Y ? Convergence in distribution only requires the limiting dis-

tributions to match but the limiting random variable can look very counter
intuitive. For this reason, it is a weak form of convergence.
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Measuring Convergence
Convergence in Probability

Definition (Convergence in Probability)

A sequence of random variables {Xn} converges to X in probability and is

denoted as Xn
p−→ X if

lim
n→∞

P(|Xn − X | ≥ ε) = 0

for all ε > 0.

Think of the event An that represents the set of all outcomes for which
|Xn(ω) − X (ω)| ≥ ε. The probability of such events must keep shrinking
as n→∞.

Convergence in probability is stronger than convergence in distribution.
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Measuring Convergence
Convergence in Probability

Let us revisit the earlier example and check for convergence using this new
measure

Xn(ω) =

{
1 if ω = H

0 otherwise
Y (ω) =

{
1 if ω = T

0 otherwise

This experiment has two outcomes H and T and by the definition of the
above random variables

|Xn(H)− Y (H)| = |Xn(T )− Y (T )| = 1

Thus, for every ε ∈ (0, 1), the event corresponding to |Xn − Y | ≥ ε is
{H,T}. Hence, the associated probability is not 0 and therefore Xn 9 Y
in probability.
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Measuring Convergence
Convergence in Probability

It turns out that convergence in probability is also not that strong. For
instance, consider the problem of throwing a dart on (0,1). Suppose, we
define a sequence of indicator random variables

1(0,1), 1(0,1/2), 1(1/2,1), 1(0,1/4), 1(1/4,1/2), 1(1/2,3/4), 1(3/4,1), . . .

Do you think this sequence of random variables should converge? If so, to
what? Does this converge in probability?
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Measuring Convergence
Almost Sure Convergence

Definition (Almost Sure Convergence)

A sequence of random variables {Xn} converges almost surely to X and

is denoted as Xn
a.s.−−→ X if

P
({

ω ∈ Ω : lim
n→∞

Xn(ω) = X (ω)
})

= 1

Again notice that for a given ω, the sequence {Xn(ω)} is just a sequence
of reals and hence the limit is easy to interpret.

For example, imagine a single coin toss
from which the adjacent sequence of ran-
dom variables are defined

Xn(ω) =

{
1 if ω = H

(−1)n otherwise

What is P
(
{ω ∈ Ω : limn→∞ Xn(ω) = 1}

)
?
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Measuring Convergence
Almost Sure Convergence

This type of convergence is the strongest form of convergence and is also
called convergence with probability 1 or Xn converges strongly to X .

Does the sequence of indicator random variables defined earlier converge
almost surely to 0? The limit of the random variable matches for most
part but is different from X (ω) infinitely often (i.o.).
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Measuring Convergence
Almost Sure Convergence

Almost sure convergence ⇒ Convergence in probability ⇒ Convergence
in distribution

The other direction need not necessarily hold!
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Lecture Outline

Limit Theorems
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Limit Theorems
Law of Large Numbers

The first result is fundamental to all statistical models. It states that the
random variable derived from the average of iid random variables is close
to their mean.

This result comes in two forms, one involving convergence in probability
and another with almost sure convergence.

The proof for the latter is more involved but the first can be proved for
special cases using Chebyshev’s inequality.
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Limit Theorems
Law of Large Numbers

Claim (WLLN)

Let {Xn} be a sequence of iid random variables with finite mean µ.

X n =
X1 + X2 + . . .+ Xn

n

p−→ µ

Proof.

For the finite variance case (σ2 <∞),

E(X n) = µ

V (X n) = σ2/n

Using Chebyshev’s inequality,

P(|X n − µ| ≥ ε) ≤
σ2

nε2
⇒ lim

n→∞
P(|X n − µ| ≥ ε) = 0

�
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Limit Theorems
Law of Large Numbers

Claim (SLLN)

Let {Xn} be a sequence of iid random variables with finite mean µ.

X n =
X1 + X2 + . . .+ Xn

n
a.s.−−→ µ

There are some rare cases where the weak laws hold and the strong law
does not.
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Limit Theorems
Central Limit Theorem

We saw in one of the earlier classes that the sum of independent nor-
mal random variables is normal. The CLT goes a step further to state
the sum of any iid random variables tends to normal distribution but the
convergence is in distribution.

Claim (CLT)

Let {Xn} be a sequence of iid random variables with expected value
µ <∞ and variance σ2 <∞ and also suppose. Zn = X1 + X2 + . . .+ Xn

Then,
Zn − nµ

σ
√
n

d−→ N (0, 1)
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Limit Theorems
Example

Suppose 100 packages are loaded on a plane and the weight of each pack-
age is uniformly distributed between 5 and 50 kgs. What is the probability
that the total weight will exceed 3000 kgs?

Note that the assumptions of CLT require finite mean and variance. Hence,
you cannot apply it to a sequence of random variables that violate this
assumption (the St. Petersburg paradox for instance).

Lecture 9 Limit Theorems



31/32

Limit Theorems
Sketch of Proof of CLT

Define a new sequence {Yn} such that Yn = Xn−µ
σ . Clearly, E(Yn) = 0

and V (Yn) = 1.

By definition,

Zn − nµ

σ
√
n

=
X1 + X2 + . . .+ Xn − nµ

σ
√
n

=
Y1 + Y2 + . . .+ Yn√

n

Show that

M Zn−nµ
σ
√

n
(t) = E

(
et/
√
nY1

)n
=

(
1 +

t√
n
E(Y1) +

1

2!

(
t√
n

)2

E(Y 2
1 ) + . . .

)n

≈
(

1 +
t2/2

n

)n

Therefore,
lim

n→∞
M Zn−nµ

σ
√

n
(t) = et

2/2
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Your Moment of Zen
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