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Previously on Mathematics for Engineers

Note the probability measure is a function P : F → [0, 1] where you can
think of F as 2Ω, whereas the random variable X is another function
X : Ω→ R.

As seen in the previous examples, for subsets S ⊂ R, we can find an event
A ∈ F such that X−1(S) = A = {ω ∈ Ω|X (ω) ∈ S}.

Hence, the following probabilities are the same

P(X ∈ S) = P(X−1(S)) = P(A) = P({ω ∈ Ω|X (ω) ∈ S})

Be careful to not write X (A) and P(S), where A ∈ F and S ⊂ R (unless
of course Ω = R).
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Previously on Mathematics for Engineers

Continuous random variables are ones which are defined on uncount-
able sample spaces.

For example, X could represent the location of a randomly thrown
dart on the interval [0, 1] in which case it can be written as X :
[0, 1] → R or on a two-dimensional circle of some radius, i.e., X :
C → R, where C = {(x , y)|x2 + y2 ≤ r} etc.

ℝ
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Previously on Mathematics for Engineers

Just like the discrete case, we define a probability density function but with
a small twist since the probability of observing a singleton event is 0.

Definition (Probability Density Function)

The probability density function (PDF) of a continuous random variable
is denoted as fX (x) and is defined as

fX (x)dx = P
(
X ∈ [x , x + dx ]

)
Thus, the probability that the random variable lies in a subset S is given
by

P(X ∈ S) =

∫
x∈S

fX (x)dx

Since the probability that X equals any value is 0, the above definition
could have been written using (x , x + dx ], [x , x + dx), or (x , x + dx).

Lecture 5 Continuous Random Variables



5/54

Previously on Mathematics for Engineers

The definition of CDF for continuous random variables remains unchanged

Definition (Cumulative Distribution Function)

The cumulative distribution function (CDF) of a random variable X is
denoted by FX (x) and is defined as

FX (x) = P(X ≤ x) =

∫ x

−∞
fX (x)dx
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Lecture Outline

1 The Problem

2 Expectation and Variance
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6 Other Distributions

7 A Solution
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Lecture Outline

The Problem
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The Problem
Prospect Theory

Suppose you are to choose between the following two options:

1 I toss a biased coin and with probability 0.8 I’ll give you |4000 and
with probability 0.2 I’ll give you nothing.

2 I’ll give you |3000 with probability one.

Which one would you choose?
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The Problem
Prospect Theory

Now choose between these options:

1 I toss a biased coin and with probability 0.8 I’ll take |4000 from you
and with probability 0.2 I’ll take nothing.

2 I’ll take |3000 from you with probability one.

Which one would you choose? Why did some of you change your mind?
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Lecture Outline

Expectation and Variance
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Expectation and Variance
Expectation

The notion of expectation and variance can be extended to continuous
random variables by replacing summations with integrals

Definition (Expectation)

The expected value of a random variable X is denoted by E(X ) or µX

and is defined as

E(X ) =

∫
x∈RX

xfX (x)dx

Note that by definition of CDF,

dFX (x)

dx
= fX (x)

.
Hence, the formula for expectation can also be written as

E(X ) =

∫
x∈RX

xdFX (x)
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Expectation and Variance
Expectation

Just like the discrete case, we can also define expectation of functions of
random variables f (X )

Definition (Expectation of Functions)

The expectation of a function of random variable g(X ) is denoted by
E(g(X )) or µg(X ) and is defined as

E(g(X )) =

∫
x∈RX

g(x)fX (x)dx
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Expectation and Variance
Variance

The extend of dispersion or spread around the mean is captured by variance.

Definition (Variance)

The variance of a random variable X is denoted by V (X ), Var(X ), or σ2
X

and is defined as

V (X ) = E
(
(X − µX )2

)
=

∫
x∈RX

(x − µX )2fX (x)dx

The term σX =
√
V (X ) is also called the standard deviation of X .
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Expectation and Variance
Functions of Random Variables

The following results also hold for the continuous case

Claim

I If a and b are constants, E(aX + b) = aE(X ) + b

I V (X ) = E(X 2)− (E(X ))2

I V (g(X )) = E
(

(g(X )− µg(X ))
2
)

I If a and b are constants V (aX + b) = a2V (X )
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Lecture Outline

Uniform Distribution
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Uniform Distribution
Motivating Example

The uniformly distributed random variable on an interval is one of the
simplest continuous random variables.

The following situations are examples which can be modelled using such
random variables.

I A dart is thrown at random on a line. The position at which it lands
can be modelled using a uniform distribution.

I A bus route operates at a certain frequency, say 15 min. The time
at which a passenger arrives between two consecutive bus arrivals
can be assumed to be uniformly distributed.
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Uniform Distribution
Probability Density Function

Definition

Suppose X ∼ U(a, b), then the PDF of X is defined as

fX (x) =


1

b − a
if a ≤ x ≤ b

0 otherwise

I What is the support of this random variable?

I Is this a valid PDF? That is, is the area under this curve 1?

I What is its cumulative distribution function?
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Uniform Distribution
Cumulative Density Function

Claim

Suppose X ∼ U(a, b), then the CDF of X is

FX (x) =


0 if x < a
x − a

b − a
if a ≤ x ≤ b

1 otherwise

Check if dFX (x)/dx = fX (x).
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Uniform Distribution
PDF and CDF

The PDF and CDF of a uniformly distributed random variable on [2,5] is
shown below.
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Uniform Distribution
Expectation and Variance

Claim

If X ∼ U(a, b), E(X ) = 1
2
(a+ b) and V (X ) = 1

12
(b − a)2.

Proof.

E(X ) =

∫ b

a

x
1

(b − a)
dx

=
1

(b − a)

1

2
x2
∣∣∣b
a

=
b2 − a2

2(b − a)

=
1

2
(a+ b)

V (X ) (Exercise) �
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Uniform Distribution
Quickercise

Consider a random variable X ∼ U(2, 5). What is the probability that

I X ≥ 3

I 3 ≤ X ≤ 4
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Lecture Outline

Exponential Distribution
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Exponential Distribution
Motivating Example

Exponential distribution is commonly used to model time between consec-
utive events when the events occur according to Poisson distribution.

For example,

I The time duration between two accidents on a highway

I The amount of time taken by a bank teller to serve a customer

I The time between two arrivals at a checkout queue
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Exponential Distribution
Probability Density Function

Definition

Suppose X ∼ exp(λ), its probability density function is defined as

fX (x) =

{
λe−λx if x ≥ 0

0 otherwise

I What is the support of this random variable

I Is this a valid PDF? i.e., is the area under this curve 1?

I What is its cumulative distribution function?
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Exponential Distribution
Cumulative Density Function

Claim

Suppose X ∼ exp(λ), its CDF is

FX (x) = 1− e−λx

Check if dFX (x)/dx = fX (x).
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Exponential Distribution
PMF and CDF

PDF and CDF of an exponentially distributed random variable with λ = 2
are shown below.
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Exponential Distribution
Expectation and Variance

Claim

If X ∼ exp(λ), then E(X ) = 1/λ and V (X ) = 1/λ2

Proof.

E(X ) =

∫ ∞
0

xλe−λxdx

= x

∫
λe−λxdx −

∫ ∫
λe−λxdx

∣∣∣∞
0

= −xe−λx +

∫
e−λxdx

∣∣∣∞
0

= −xe−λx − 1

λ
e−λx

∣∣∣∞
0

=
1

λ

V (X ) (Exercise) �
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Exponential Distribution
Connections with Poisson Distribution

To see why inter-arrival times of an Poisson distributed random variable is
exponentially distributed, let X ∼ Pois(λ).

Consider a time window t. The probability that there are zero arrivals in
t is given by

P(X = 0) =
(λt)0e−λt

0!
= e−λt

If Y is the inter-arrival time, then P(X = 0) = P(Y > t).

Hence, P(Y ≤ t) = 1−e−λt , which is the CDF of the exponential random
variable.
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Exponential Distribution
Quickercise

Suppose that the inter-arrival times of buses at a bus stop are exponentially
distributed with rate λ. Let X be the arrival time of the next bus.

Assuming, that you have been waiting for t minutes (right after the passing
of the previous bus), what is the probability that you will have to wait at
least another s minutes.

P(X > s + t|X > t) =?

For this reason, exponential random variable is said to exhibit a memory-
less property.
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Lecture Outline

Normal Distribution
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Normal Distribution
Introduction

This is the most popular among all distributions. Some loose connections
between the binomial theorem and normal distribution was discovered by
De Moivre in early 1700s.

Gauss and Laplace are credited to have developed it further in their studies
on least squares and the central limit theorem. Normal distribution is also
commonly called as Gaussian Distribution.
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Normal Distribution
Probability Density Function

Definition

The PDF of a random variable X ∼ N (µ, σ2) with parameters µ and σ2

is given by

fX (x) =
1

σ
√

2π
e−

1
2 ( x−µ

σ )2

I What is the support of this random variable

I Is this a valid PDF? i.e., is the area under this curve 1?

I What is its cumulative distribution function?

Mean and variance are called location and scale parameters. (Why?)
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Normal Distribution
Cumulative Distribution Function

The normal distribution does not have a closed form CDF. Its CDF is often
described using the error function that is defined as

erf(x) =
1

π

∫ x

−x
e−z

2

dz

Definition

CDF of a Normal distributed random variable with parameters µ and σ2

in terms of the erf function is

FX (x) =
1

2

(
1 + erf

(x − µ
σ
√

2

))
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Normal Distribution
PMF and CDF

The PDF and CDF of a normally distributed random variable with mean
4 and standard deviation 2 (green) and 3 (blue) are shown below.
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Normal Distribution
Standard Normal

Normal distribution with parameters 0 and 1 is very useful and is called
the standard normal random variable.

Definition

The PDF of a standard normal random variable Z ∼ N(0, 1) with is given
by

fZ (z) =
1√
2π

e−
1
2 z

2

The symbol Φ(x) is commonly used to denote the CDF of the standard
normal random variable.

Φ(x) =
1

2

(
1 + erf

( x√
2

))
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Normal Distribution
PMF and CDF of Standard Normal

PDF and CDF of the standard normal random variable are shown below.
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Normal Distribution
Expectation and Variance of Standard Normal Distribution

Claim

Suppose Z ∼ N(0, 1), E(Z ) = 0,V (Z ) = 1

Proof.

E(Z ) =

∫ ∞
−∞

z
1√
2π

e−
1
2 z

2

dz

= − 1√
2π

e−
1
2 z

2

∣∣∣∣∞
−∞

= 0

V (X ) (Exercise) �
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Normal Distribution
Expectation and Variance of Normal Distribution

Claim

Suppose X ∼ N(µ, σ2), E(X ) = µ,V (X ) = σ2

Proof.

Note that the standard normal and normal random variables are related as

X = σZ + µ

Hence, E(X ) = σE(Z ) + µ = µ and V (X ) = σ2V (Z ) = σ2 �
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Normal Distribution
Reading Tables
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Normal Distribution
Quickercise

Consider a normally distributed random variable X ∼ N (4, 9). What is
the probability that

I X ≥ 5

I µ− σ ≤ X ≤ µ+ σ

I µ− 2σ ≤ X ≤ µ+ 2σ
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Lecture Outline

Other Distributions
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Other Distributions
Lognormal Distribution

A random variable X is said to be log-normally distributed or Galton
distributed if lnX is normally distributed. In other words, X = eσ+µZ ,
where Z is a standard normal random variable.

X ∼ Lognormal(µ, σ2)
Parameters µ ∈ R, σ > 0
Support x ∈ (0,∞)

PDF
1

xσ
√

2π
exp

(
− (ln x − µ)2

2σ2

)
CDF

1

2
+

1

2
erf

(
ln x − µ
σ
√

2

)
Expectation exp

(
µ+

σ2

2

)
Variance exp(2µ+ σ2)

(
exp(σ2)− 1

)
Note that the parameters µ and σ are the mean and standard deviation of
lnX and not X .
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Other Distributions
Lognormal Distribution

Lecture 5 Continuous Random Variables



44/54

Other Distributions
Beta Distribution

Beta distributions are common in situations in which the realizations of
the random variable falls in an interval.

X ∼ Beta(α, β)
Parameters α > 0, β > 0
Support x ∈ (0, 1)

PDF


1

B(α, β)
xα−1(1− x)β−1 if 0 < x < 1

0 otherwise

CDF No closed form

Expectation
α

α + β

Variance
αβ

(α + β)2(α + β + 1)

where B(α, β) =
∫ 1

0
xα−1(1− x)β−1dx
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Other Distributions
Beta Distribution
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Other Distributions
Weibull Distribution

A commonly used distribution in reliability analysis is Weibull distribution.
It is a more general version of the exponential random variable.

X ∼Weibull(α, β)
Parameters α > 0, β > 0
Support x ∈ [0,∞)

PDF


β

α

( x
α

)β−1

e−(x/α)β if x ≥ 0

0 otherwise

CDF

{
1− e−(x/α)β if x ≥ 0

0 otherwise

Expectation αΓ(1 + 1/β)

Variance α2
(

Γ(1 + 2/β)− (Γ(1 + 1/β))2
)
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Other Distributions
Weibull Distribution
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Other Distributions
Cauchy Distribution

Cauchy distributed random variables are interesting because they do
not have a finite mean or variance! (Just like the random variable in St.
Petersburg paradox)

X ∼ Cauchy(θ, α)
Parameters θ ∈ R, α > 0
Support x ∈ R

PDF
1

πα
(

1 + ((x − θ)/β)2
)

CDF
1

π
tan−1

(x − θ
α

)
+

1

2
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Other Distributions
Cauchy Distribution
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Other Distributions
Gamma Distribution

Gamma distributed random variables are used to model the time until
occurrence of α events.

X ∼ Γ(α, β)
Parameters α > 0, β > 0
Support x ∈ (0,∞)

PDF


βα

Γ(α)
xα−1e−βx if x ≥ 0

0 otherwise

CDF No simple closed form
Expectation α/β
Variance α/β2

where Γ(α) is called the Gamma function and is defined as

Γ(α) =

∫ ∞
0

e−xxα−1dx

This function is just like the factorial but is also defined for non-integers
and satisfies Γ(α) = (α− 1)Γ(α− 1)
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Other Distributions
Gamma Distribution

A special case of Gamma distribution is called Chi-square or χ2
n distributed

with n degrees of freedom.
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Lecture Outline

A Solution
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A Solution
Prospect Theory

Expected value is the same in both cases. But then one is positive and the
other is negative.

A majority of you were risk-averse in the first case and risk-seeking in the
second case.

Daniel Kahneman and Amos Tversky in 1979 highlighted the pitfalls of
using the expectation of utilities. Kahneman won the Nobel in 2002 for
their work on prospect theory.

Framing effects and the way we perceive gains and losses play a major role
in human decision making.
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Your Moment of Zen
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