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Previously on Mathematics for Engineers

There are multiple ways in which the term probability can be interpreted.
For example,

I Suppose an unbiased coin is being tossed. The probability of
observing heads is 0.5. One way to interpret 0.5 is that it is the
frequency of occurrence of heads when we conduct a large number
of trials.

I On the other hand, consider a statement “Based on historical
records, there is an 80% chance that Subhas Chandra Bose died in a
plane crash”. The frequency argument won’t work here since there
is no repetition. In such instances, probability can be viewed as a
subjective belief.
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Theorem (Bayes’ Theorem)

Suppose A1, . . . ,An represents a partition of the sample space Ω and
P(Ai ) > 0 ∀ i = 1, . . . , n. Then, for any event B with P(B) > 0

P(Ai |B) =
P(Ai )P(B|Ai )

P(B)

=
P(Ai )P(B|Ai )

P(A1)P(B|A1) + . . .+ P(An)P(B|An)

For two events A and Ac , Bayes’ theorem can be rewritten as

P(A|B) =
P(A)P(B|A)

P(A)P(B|A) + P(Ac)P(B|Ac)
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Beta distributions are common in situations in which the realizations of
the random variable falls in an interval.

X ∼ Beta(α, β)
Parameters α > 0, β > 0
Support x ∈ (0, 1)

PDF


1

B(α, β)
xα−1(1− x)β−1 if 0 < x < 1

0 otherwise

CDF No closed form

Expectation
α

α + β

Variance
αβ

(α + β)2(α + β + 1)

where B(α, β) =
∫ 1

0
xα−1(1− x)β−1dx
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The specific choice of the estimator Θ̂ for a parameter θ is governed by a few
desirable properties.

Definition (Bias)

An estimator Θ̂n of θ is unbiased if the bias B(Θ̂n) = E(Θ̂n)− θ is 0.

Definition (MSE)

Given an estimator Θ̂n of θ, the mean squared error of the estimator is defined

as MSE(Θ̂n) = E
(

(Θ̂n − θ)2
)

Definition (Consistency)

An estimator Θ̂n of θ, is said to be consistent if Θ̂n
p−→ θ

A consistent estimator with zero bias and lower MSE is always preferred.
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Imagine the travel time on a street was lognormal and we are in-
terested in its mean and variance. Suppose, we make the following
measurements 5,7,3,4, and 7.

To estimate the mean of the random variable µ, we will define Θ̂n

as

Θ̂n =
X1 + X2 + . . .+ Xn

n

Θ̂n is a random variable since it is a function of random variables.
Every set of measurements of X s we make will give us a realization
of Θ̂n.

Likewise, to estimate the variance σ2, we define

Θ̂n =
1

n − 1

n∑
i=1

(
Xi −

X1 + X2 + . . .+ Xn

n

)2
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For continuous random variables, we use the PDF function at each data
point and multiply them to derive the likelihood function.

As an example, suppose we want to estimate the parameters µ and σ of a
lognormal distribution. Assume that we observe realizations x1, x2, . . . , xn.

The likelihood objective can then be written as

L(µ, σ) =
n∏

i=1

1

xiσ
√

2π
exp

(
− (ln xi − µ)2

2σ2

)
The log-likelihood takes the form

LL(µ, σ) =
n∑

i=1

ln

(
1

xiσ
√

2π
exp

(
− (ln xi − µ)2

2σ2

))

The objective is to thus maximize LL(µ, σ) by changing both µ and σ
subject to σ > 0.
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Lecture Outline

1 The Problem

2 Bayesian Inference

3 Point Estimation

4 A Solution
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The Problem
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The Problem

Simon Newcomb, an astronomer, found in 1881 that the first few pages
in logarithm tables in a library were more worn out than the others. Why?
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Lecture Outline

Bayesian Inference
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Bayesian Inference
Introduction

The estimation methods that we saw earlier are called frequentist or clas-
sical approaches.

In these methods, we assume that the true parameter value (θ) is deter-
ministic but are unknown and we use realizations of estimators Θ̂ to guess
their values.

Bayesian methods on the other hand treat the parameters as a random
variable Θ. They begin by assuming a prior probability distribution pΘ(θ)
and update it as more information X becomes available to construct a
posterior distribution pΘ|X (θ|x).
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Bayesian Inference
Bayes’ Theorem Revisited

Assume that we observe data/measurements X = (X1,X2, . . . ,Xn), which
can be viewed as a realization of a random vector.

The posterior distribution can thus be written as

pΘ|X (θ|x) =
pΘ(θ)pX |Θ(x |θ)∑
θ′ pΘ(θ′)pX |Θ(x |θ′)

Does pX |Θ(x |θ) in the numerator resemble something that we saw before?
An alternate way of writing the posterior is

pΘ|X (θ|x) ∝ L(θ)pΘ(θ)

which is the product of the prior and the likelihood function.
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Bayesian Inference
Summary

A Bayesian is one who, vaguely expecting a horse, and catching a glimpse
of a donkey, strongly believes he has seen a mule (Source: Internet)
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Bayesian Inference
Example 1: Coin Tosses

Imagine that we wish to estimate the probability of heads of a biased coin.
Suppose we toss it n times and observe k heads. How does the frequentist
solve this problem?

The Bayesian would assume that the head probability is a random variable
Θ. A potential prior could be Θ ∼ U(0, 1). Hence, fΘ(θ) = 1 for θ ∈ (0, 1).

The observations could be viewed as realizations of n Bernoulli trials
X1, . . . ,Xn ∼ Bernoulli(θ). The posterior PDF can thus be written as

fΘ|X (θ|k) ∝ fΘ(θ)pX |Θ(k |θ)

∝ θk(1− θ)n−k

Comparing it with the PDF of Beta distribution 1
B(α,β)x

α−1(1−x)β−1, we

can conclude that

Θ|X ∼ Beta(k + 1, n − k + 1)
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Bayesian Inference
Example 2: Gaussian Priors

Suppose we observe X = (X1, . . . ,Xn), where each Xi ∼ N (θ, σ2) and σ2

is known and wish to estimate the mean. How does the frequentist solve
this problem?

Suppose the Bayesian assumes that the mean is a random variable Θ with
a prior ∼ N (a, σ2), where a is a known constant. The posterior can thus
be written as

fΘ|X (θ|x) ∝ fΘ(θ)fX |Θ(x |θ)

∝ 1

σ
√

2π
e−

1
2 ( θ−a

σ )2
n∏

i=1

1

σ
√

2π
e−

1
2 (

x1−θ
σ )2

Simplifying this expression gives Θ|X ∼ N
(

a+x1+...+xn
n+1 , σ2

n+1

)
This is an example where the posterior also belongs to the same family as
that of the prior, and these are called conjugate prior and posterior.
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Point Estimation
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Point Estimation
Introduction

Unlike in the frequentist method, Bayesian inference does not provide a
single parameter estimate θ̂ from the data.

While the earlier approach helps us derive the posterior distributions, we
might be interested in a single point estimate which gives the best guess
of Θ.
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Point Estimation
MAP Rule

One popular point estimate is the Maximum a Posteriori (MAP) probability
rule.

According to this method, we simply select the realization θ̂ at which the
posterior distribution is maximized (see green point). Mathematically,

θ̂ = arg max
θ

fΘ|X (θ|x)

What is the MAP estimator for the Gaussian posterior in the earlier exam-
ple?
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Point Estimation
Conditional Expectation

Another option is to use the expected value of the posterior random variable
(see orange point). This value is also called the conditional expectation
estimator.

Mathematically, θ̂ = E(Θ|X = x). What is the conditional expectation
estimator for the Gaussian posterior in the earlier example?
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A Solution
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A Solution
Benford’s Law

Most numbers found in practice tend to start with the digit 1. Frank
Benford, a physicist discovered this pattern in 1938 on several datasets
such as physical constants and surface areas of rivers.

Figure: Distribution of first digits in the population of countries

Since then, this pattern has been found in many other areas such as bank
account balances and genome data. It has also been used a screening for
fraud detection. Mathematical explanations based on entropy have been
proposed for this phenomenon.
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Your Moment of Zen
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