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The Problem
The Birthday Problem

In a class of n students, what is the probability that two or
more students share the same birthday?
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Course Overview
Frequently Asked Questions (FAQs)

Why take this course?

I (CE students) It is a core course. You have no choice :)

I (Others) If your research requires some mathematical background,
this course covers material on commonly used topics.

What will I learn from this part of the course?

I We will mostly discuss applied probability which deals with how
uncertainty can be modeled and understood.

I A couple of lectures towards the end are dedicated for introductory
statistics.
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Course Overview
Prerequisites and Texts

While the course does not have assume prerequisites background in ele-
mentary calculus is assumed.

The following books can be used as references for this course:

1 Ross, S. (2014). A first course in probability. Pearson.

2 Papoulis, A., & Pillai, S. U. (2002). Probability, random variables
and stochastic processes. Tata McGraw Hill.

*Other editions of these books can also be used

Microsoft Teams will be used for course communication. Lecture slides

will be posted on Teams in advance. Make sure to skim through them

before coming to the class.
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Course Overview
Assignments, Exams, and Grading

Written Assignments

I This part of the course will have 2 written assignments.

I You are encouraged to discuss the problems but you must submit
your own solutions.

I Plagiarism is strictly prohibited and will be penalized.

Examinations

I There will be online quizzes for this part of the course.

I End-semester exam is comprehensive

Grading TBD
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Course Overview
Course Feedback

I At the end of each class, you are required to provide feedback on
Teams by answering if ‘the contents of the lecture were clear and
easy to understand?’

I Responses are to be provided on a Likert scale (Strongly disagree,
Disagree, Neither, Agree, Strongly agree).

I These stats will help me calibrate the course content and also in
picking the right questions for the assignments.
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Course Overview
Office Hours

I If you have any course related queries, feel free to post a note on
Teams or schedule an appointment by email.

I While sending emails regarding the course, please include
“CE-211-2020” in the subject line. This will make it easier for me
to track mails.

I Attendance is a must unless you have internet issues or other valid
reasons.
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Combinatorics
Permutations

Definition (Permutations)

The number of ways of arranging n items is n!

There are n ways to select the first item For each choice of the first item,
there are n − 1 ways to select the second, and so on.

For example, the permutations of three letters A, B, and C are ABC, ACB,
BAC, BCA, CAB, CBA. Here, the order of arrangements are important.

Definition (k-Permutations)

The number of ways of arranging k of n items is given by
n!

(n − k)!
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Combinatorics
Combinations

Definition (Combinations)

The number of ways of selecting k items from a set of n items is given by(
n

k

)
=

n!

k!(n − k)!

Here, the order of arrangements is not important. For instance, the number

of combinations of two of the three letters A, B, and C are {A,B}, {B,C},
and {C,A}.
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Combinatorics
Quickercise

I In how many unique ways can n people be circularly arranged?

I In how many ways can your rearrange the letters of the word
PROBABILITY?

I Find the number of ways of dividing 22 cricket players into two
teams of 11 each?

I A standard deck of 52 cards has an equal number of ♥, ♣, ♦, and
♠. In how many ways can we arrange them such that all cards of
the same suit are next to each other.

I You are creating a play list with 5 rap songs and 5 classical pieces.
In how many ways can you do this without having songs of the
same genre next to each other.
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Combinatorics
Combinatorics

Prove the Binomial Theorem: Let n be a positive integer.

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k

Hence,

(
n

k

)
is also called Binomial Coefficients. Using the above theo-

rem, show that

I

(
n

k

)
=

(
n

n − k

)
I

n∑
k=0

(
n

k

)
= 2n

Provide an alternate proof for the above statements using a mathematical

or a combinatorial argument.
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Combinatorics
Pascal’s Triangle

Pascal Triangle: For integers 1 ≤ k ≤ n − 1, show that(
n

k

)
=

(
n − 1

k − 1

)
+

(
n − 1

k

)

1
↙↘

1 1
↙↘ ↙↘

1 2 1
↙↘ ↙↘ ↙↘

1 3 3 1
↙↘ ↙↘ ↙↘ ↙↘

1 4 6 4 1
↙↘ ↙↘ ↙↘ ↙↘ ↙↘

1 5 10 10 5 1
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Combinatorics
Partitions

The number of ways of partitioning n items into r groups with each group
having n1, n2, . . . , nr items (which add up to n) is given by

(
n

n1

)(
n − n1

n2

)
. . .

(
n −

∑r−1
k=1 nk

nr

)
=

n!

n1!n2! · · · nr !
=

(
n

n1, n2, . . . , nr

)

Can you derive the same answer using permutations?
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Combinatorics
Partitions

Multinomial theorem: Let n be a positive integer

(x1 + x2 + . . . + xr )
n =

∑
n1+...+n2=n

n!

n1!n2! · · · nr !
xn1

1 xn2
2 · · · x

nr
r

For this reason,
(

n
n1,n2,...,nr

)
are also called multinomial coefficients.

Using a combinatorial argument, show that(
n

n1, n2, . . . , nr

)
=

(
n − 1

n1 − 1, n2, . . . , nr

)
+

(
n − 1

n1, n2 − 1, . . . , nr

)
+ . . . +

(
n − 1

n1, n2, . . . , nr − 1

)
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Combinatorics
Solutions to Equations

Given an integer n, how many non-negative solutions exist for the equation
x1 + x2 + . . . + xr = n.

Imagine n zeros and (r − 1) ones. The ones serve as markers which split
the zeros into x1, x2, . . . , xr . For example, when n = 10 and r = 5, a
feasible solution can be expressed as

10001010010000

Thus, of the n + r − 1 spaces, we need to choose r − 1 spots. This can be
done in

(
n+r−1
r−1

)
ways. What if the xs have to be strictly positive?
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Combinatorics
Challenges

Combinatorial problems can be challenging since one can arrive at the
answer in several different ways and there might be no set procedure to
solve the problem.

The tools that we have seen so far are handy when dealing with counting,
but problems on this topic often require more creativity. Let’s take a look
at a couple of examples.
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Combinatorics
Double Counting

Lemma (Handshaking Lemma)

At a gathering of n individuals, assume that some shake hands (no two
individuals repeat) and no one shakes his/her own hand. Show that the
number of people who shake hands an odd number of times is even.

The double counting proof technique is nothing but an obvious fact. If
you can count the number of ways in which some event happens in two
ways, the answers must be the same.

For example, if tasks A and B can be performed in n and m ways respec-
tively. The number of ways to perform both tasks (assuming order of tasks
is not important) is nm = mn.

We have already used this in many of the combinatorial arguments dis-
cussed thus far. But the handshaking lemma is a more crafty application.
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Combinatorics
Bell Numbers

Suppose a set A has n elements. Define Bn as the number of elements of
the set containing all partitions of n. For example, suppose A = {1, 2, 3}.
Then, B3 = 5 since the set of all partitions is{

{1}, {2}, {3}
}{

{1, 2}, {3}
}{

{1}, {2, 3}
}{

{1, 3}, {2}
}{

{1, 3, 2}
}

How many elements are present in Bn for a given n?
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Counting and Sets
Bell Numbers

Here is a graphic which illustrates the set of all partitions for n = 5.
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Combinatorics
Bell Numbers

From The Tale of Genji, a Japanese novel from the 11th century,
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Combinatorics
Bell Numbers

In problems like, these, it is helpful to build the solution from smaller values
of n using recursion.

The values of Bn, also called Bell numbers, satisfy the following recursive
relationship.

Bn+1 =
n∑

k=0

(
n

k

)
Bk

To see why, consider partitions in which the (n + 1)th element appears as
a singleton. The number of such partitions is Bn.

Now consider the case where the (n + 1)th element appears along with
exactly one of the remaining n elements. The other element can be selected
in
(
n
1

)
ways and the remaining elements can be partitioned in Bn−1 ways.
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Combinatorics
Bell Numbers

Proceeding similarly, we get

Bn+1 =

(
n

0

)
Bn +

(
n

1

)
Bn−1 +

(
n

2

)
Bn−2 + . . . +

(
n

n

)
B0 =

n∑
k=0

(
n

k

)
Bk

The Bell numbers can also be derived iteratively using a Bell triangle.

1
1 2
2 3 5
5 7 10 15

15 20 27 37 52
52 67 87 114 151 203
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Lecture Outline

Sets and Probability
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Sets and Probability
Elementary Set Notation

A set is a collection of elements (could be numbers, words, buildings, songs,
functions, matrices, etc.). We write x ∈ A to indicate that x belongs to A
and x /∈ A otherwise. An empty set is represented using ∅. Complement
of a set A will be denoted by Ac or A′. Power set is written as 2A.

If every element of A is in B, we say A is a subset of B and write A ⊂ B.
Likewise, we say B is a superset of A and write B ⊃ A.

The union of two sets A and B is defined as the set of elements which are
in either A or B or both. Mathematically,

A ∪ B = {x | x ∈ A or x ∈ B}

The intersection of two sets A and B is defined as the set of elements
that are in both A and B. That is,

A ∩ B = {x | x ∈ A and x ∈ B}

Lecture 1 Introduction and Axioms of Probability
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Sets and Probability
Set Operations

Two sets A and B are said to be disjoint if A ∩ B = ∅.

Several set-related equalities can be derived for unions and intersections.
Venn diagrams is one way of proving them.

I A ∪ (B ∪ C ) = (A ∪ B) ∪ C

I A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∩ C )

I (A ∪ B ∪ C )c = Ac ∩ Bc ∩ C c

I (A ∩ B ∩ C )c = Ac ∪ Bc ∪ C c

A B

C

The last two equations are also called De Morgan’s laws.
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Sets and Probability
Venn Diagrams

Venn diagrams can also help visualize identities for finite sets such as

|A ∪ B| = |A|+ |B| − |A ∩ B|

|A∪B ∪C | = |A|+ |B|+ |C | − |A∩B| − |B ∩C | − |C ∩A|+ |A∩B ∩C |

More generally, |A1 ∪ · · · ∪ An| =
∑

I⊂{1,...,n}

(−1)|I |+1| ∩i∈I Ai |

Lecture 1 Introduction and Axioms of Probability
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Sets and Probability
Countable and Uncountable

Let us now look at some simple sets and study their cardinatity, i.e., let’s
count the number of elements in them.

Consider a set A comprising of the all continents in the world. Such sets
which have a finite number of elements are called finite sets.

On the other hand, consider the set of integers Z = {. . . ,−2,−1, 0, 1, 2, . . .}.
This is clearly not a finite set and there are an infinite number of elements
in them.

How about the set of even integers {. . . ,−2, 0, 2, . . .}? Which of the two
infinite sets is bigger? How about the set of integer coordinates on a 2D
plane, i.e., {(x , y)|x ∈ Z, y ∈ Z}?
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Sets and Probability
Finite and Infinite Sets

Definition (Countably Infinite)

A set A is countably infinite if there exists a bijective function f from A
to the set of natural numbers N = {1, 2, 3, . . . , }.
Sets that are finite or countably infinite are called countable. The founda-
tions for counting sets were laid by Georg Cantor in the late 1800s.
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Sets and Probability
Countable Sets

The set of rational numbers Q is also countably infinite!
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Sets and Probability
Uncountable Case

Sets that are not countable are called uncountable. The set of real num-
bers R is uncountable since we cannot create a bijective function to N.
Cantor proved this using a diagonalization argument.

Let’s proceed by contradiction. We will show that the unit interval (0, 1)
is uncountable. Extension to R is trivial. (Why?) Suppose we can list all
reals in (0, 1) and associate each number with a natural number

1 0.3895127 . . .
2 0.2500000 . . .
3 0.6246346 . . .
4 0.2222222 . . .
5 0.1225743 . . .
6 0.5852158 . . .
...

...

Construct a number which differs from the diagonal elements shown in
bold. E.g., 0.472561...This will never appear in the above list!

Lecture 1 Introduction and Axioms of Probability
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Sets and Probability
Some Infinities are Bigger than Others

To summarize, sets that are countable are either finite or countably infinite
such as N,Z,Q.

On the other hand, there are several sets such as the set of irrationals Qc

and R which are uncountable. One can also show bijections between R,
Rn, and even 2N!

These results have serious implications in the way we study probability
from a theoretical standpoint.
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Sets and Probability
Understanding Probability

There are multiple ways in which the term probability can be interpreted.
For example,

I Suppose an unbiased coin is being tossed. The probability of
observing heads is 0.5. One way to interpret 0.5 is that it is the
frequency of occurrence of heads when we conduct a large number
of trials.

I On the other hand, consider a statement “Based on historical
records, there is an 80% chance that Subhas Chandra Bose died in a
plane crash”. The frequency argument won’t work here since there
is no repetition. In such instances, probability can be viewed as a
subjective belief.
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Sets and Probability
Finite Case

Let us now consider some simple examples and define a framework for
studying probability.

Suppose an unbiased coin is tossed thrice. This act is what we call an
experiment. Each experiment results in an outcome, e.g., Heads, Tails,
Heads.

The set of all possible outcomes is called the sample space which is usually
denoted by Ω.

Specify the sample space in the following experiment

I Tossing a coin thrice

I Rolling two dice

Lecture 1 Introduction and Axioms of Probability
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Sets and Probability
Finite Case

We are usually interested in the probability that one or some of the out-
comes the sample space occur.

These questions can be translated to a subset of outcomes that are called
events. We say that an event happened if one of the outcomes in the
event occurs during the experiment.

For example, in the previous experiments

I What is the event where we see exactly two heads

{HHT ,HTH,THH}

I What is event where the sum of the dice is 7

{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}

Note that not all subsets can be easily described in words. But we still
treat them as events and can ask the probability of its occurrence.

Lecture 1 Introduction and Axioms of Probability
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Sets and Probability
Finite Case

An intuitive and familiar way for computing probabilities of events is to
look at the number of elements in the event and divide it by the total
number of outcomes.

Definition (Discrete Uniform Probability)

Suppose the sample space of an experiment consists of n outcomes which
are equally likely, then the probability of an event A is

P(A) =
|A|
n

One must be careful in constructing the outcomes of the sample space.
For example, when two dice are thrown, the sum has 11 outcomes: 2, 3,
. . . , 12. Using this argument, the probability is 1/11. If you treat the
dice to be indistinguishable, the answer would be 3/21 (Why?) Both the
answers are wrong because all outcomes are not equally likely.
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Sets and Probability
Finite Case

This notion of probability can solve several practical problems. Results
regarding the cardinatilty of sets extend naturally. For example,

I P(Ω) = 1,P(∅) = 0

I P(Ac) = 1− P(A)

I P(∪ni=1Ai ) =
∑

I⊂{1,...,n}(−1)|I |+1P(∩i∈IAi )

I P ((∪ni=1Ai )
c) = P(∩ni=1A

c
i )
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Sets and Probability
Finite Case

To summarize, when we have a finite number of equally likely outcomes,
the framework for studying probability involves

I A sample space Ω consisting of all outcomes

I The set of all events 2Ω

I A probability function P : 2Ω → [0, 1]

However, things get complicated when the sample space is countably infi-
nite or uncountable. For example,

I Suppose we randomly pick an integer. What is the probability that
it is even?

I Imagine throwing darts on the unit interval [0, 1]. What is the
probability that we hit 1/4? What is the probability that we hit a
rational number?
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Lecture Outline

A Solution
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A Solution
The Birthday Problem

Ignore leap years and assume that there are 365 days and let A be the
event that at least two people have the same birthday. The sample space
Ω is the set of all possible birthdays of everyone and has 365n elements.

Let’s calculate the probability of Ac , the probability that no two have the
same birthday. In a class of 60 individuals, that would be

P(Ac) =
365

365
× 364

365
× . . .× 306

365

Therefore,

P(A) = 1− 365

365
× 364

365
×. . .× 306

365
= 0.994
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Your Moment of Zen
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