
CE 205A
Transportation Logistics

Lecture 3

Integer Programming

Lecture 3 Integer Programming

2/36

Lecture Outline

1 Integer Programs

2 Strong Formulations

Lecture 3 Integer Programming

3/36

Lecture Outline

Integer Programs

Lecture 3 Integer Programming

4/36

Integer Programs
Introduction

An Integer Program (IP) additionally restricts the decision variables to take
integer values

min cTx

s.t. Ax ≥ b

x ≥ 0

x ∈ Zn
+

Usually, non-negativity constraints are redundant since the x variables are
restricted to non-negative integers.

min cTx

s.t. Ax ≥ b

x ∈ Zn
+

Lecture 3 Integer Programming

5/36

Integer Programs
Variants

In many problems, the decision variables are 0-1 integer that indicates
true-false type situations.

min cTx

s.t. Ax ≥ b

x ∈ {0, 1}n

It is also common to have both continuous and discrete variables in a single
formulation. These are called Mixed Integer Programs (MIP).

min cTx+ ĉTy

s.t. Ax+ Ây ≥ b

x ≥ 0, y ∈ Zn
+

Lecture 3 Integer Programming

6/36

Integer Programs
Geometry

Integer Program Mixed Integer Program

Are ‘corner points’ solutions optimal? How does the convex hull of the

MIP problem look like?

Lecture 3 Integer Programming

7/36

Integer Programs
Example 1: Knapsack Problem

Suppose we have a travel bag of capacity b kgs. Assume there are n items
that can be included in the bag. For item j , the utility is cj and the weight
is aj respectively. Formulate an optimization problem to maximize the
utility.

max
n∑

j=1

cjxj

s.t.
n∑

j=1

ajxj ≤ b

xj ∈ {0, 1} ∀ j = 1, . . . , n

Lecture 3 Integer Programming

8/36

Integer Programs
Example 2: Generalized Assignment Problem

Suppose there are m agents and n jobs. Each agent i can perform job j
in tij units of time. The amount of time available for agent i is si .

Assigning agent i to job j yields a profit of pij . Formulate an IP to allocate
agents to jobs to maximize profits while ensuring that all jobs are served.

max
m∑
i=1

n∑
j=1

pijxij

s.t.
m∑
i=1

xij = 1 ∀j = 1, . . . , n

n∑
j=1

tijxij ≤ si ∀i = 1, . . . ,m

xij ∈ {0, 1} ∀ i = 1, . . . ,m, j = 1, . . . , n

Lecture 3 Integer Programming

9/36

Integer Programs
Example 3: Set Cover, Packing, and Partitioning Problems

Consider a set S = {1, . . . ,m}. Let S = {S1,S2, . . . ,Sn} be a collection
of subsets of S . These subsets could for instance satisfy some property.

▶ A collection X ⊆ S is a cover of S if ∪Si∈XSi = S

▶ X is a packing if Si ∩ Sj = ∅ ∀Si ,Sj ∈ X

▶ X is a partition if it is both a cover and a packing.

E.g., Let S = {1, 2, 3, 4, 5}. What are the members of S if every element
of it has a cardinality of at least 2?

Set Cover Set Packing Set Partitioning

Construct an example of a cover, packing, partition for the above example?

Lecture 3 Integer Programming

10/36

Integer Programs
Example 3: Set Cover, Packing, and Partitioning Problems

Imagine that each subset Si has a weight wi . For the set covering problem,
we wish to find a cover that minimizes the sum of the weights of the chosen
subsets. Formulate this as an optimization problem.

Define an incidence matrix A whose rows are the elements of S , i.e.,
1, . . . ,m and columns 1, . . . , n represent set membership in S. That is, aij
is 1 if the ith element is present in the jth subset.

min
n∑

j=1

wjxj

s.t.
n∑

j=1

aijxj ≥ 1 ∀i = 1, . . . ,m

xj ∈ {0, 1} ∀j = 1, . . . , n

Lecture 3 Integer Programming

11/36

Integer Programs
Example 3: Set Cover, Packing, and Partitioning Problems

Can you solve a similar problem for the packing version? Does a minimiza-
tion objective make sense?

max
n∑

j=1

wjxj

s.t.
n∑

j=1

aijxj ≤ 1 ∀i = 1, . . . ,m

xj ∈ {0, 1} ∀j = 1, . . . , n

What about the partitioning problem? Can be formulated as a minimiza-
tion or maximization problem with equality constraints.

Lecture 3 Integer Programming

12/36

Integer Programs
Example 3: Set Cover, Packing, and Partitioning Problems

Consider an undirected graph G = (V ,E). A matching M ⊆ E is a set of
disjoint edges (edges that do not have a node in common). A node cover
is a set N ⊆ V such that every edge has at least one end point in N.

1
4

9

6

2
5

3

7

8

Formulate the maximum cardinality matching and minimum cardinality
cover problems using the set cover/packing/partitioning framework.

Lecture 3 Integer Programming

13/36

Integer Programs
Example 4: Bin Packing Problem

Bin packing problem is another generalization of the knapsack problem in
which there are n items and n bins. Item j has a weight wj and each bin
has a capacity c .

The goal is to minimize the number of bins used without exceeding the

capacity limits. Formulate this as an optimization problem.

Lecture 3 Integer Programming

14/36

Integer Programs
Example 4: Bin Packing Problem

Let yi be 1 if bin i is used and is 0 otherwise. Let xij take a value 1 if item
j is assigned to bin i and is 0 otherwise.

max
n∑

i=1

yi

s.t.
n∑

j=1

wjxij ≤ cyi ∀i = 1, . . . , n

n∑
i=1

xij = 1 ∀j = 1, . . . , n

yi ∈ {0, 1} ∀i = 1, . . . , n

xij ∈ {0, 1} ∀i = 1, . . . , n, j = 1, . . . , n

The first constraint is an example of forcing constraints of the type x ≤
My , where one of the variables is allowed to take a non-negative quantity

only if the other is active.

Lecture 3 Integer Programming

15/36

Integer Programs
Example 5: Lot sizing Problem

Consider a multi-period production planning problem in which producing
an item in period t involves a fixed cost ft . The unit production cost is pt
and ht is the per-period inventory cost. Let the demand in period t be dt .

Determine how much supply must be produced in each period (if any) to
minimize total costs.

Let xt be the demand produced in t and let yt indicate if production
happens in period t. Assume that st is the stock at the end of period t.

max
n∑

t=1

(ptxt + htst + ftyt)

s.t. st−1 + xt = dt + st ∀t = 1, . . . , n

xt ≤ Myt ∀t = 1, . . . , n

s0 = 0, st , xt ≥ 0 ∀t = 1, . . . , n

yt ∈ {0, 1} ∀t = 1, . . . , n

Note that the fixed cost applies only if xt > 0. What is a good M?
Lecture 3 Integer Programming

16/36

Integer Programs
Example 6: Facility Location Problem

Suppose you run a logistics company. You can open your offices at any
of n potential locations in the city and there is a fixed cost of opening a
branch at node j , which is denoted by fj .

You can serve customer demand at m locations from any of the branches.
The cost of serving customer at i from branch j is cij . Where should you
open branches and how do you pair customers and branches?

min
n∑

j=1

fjyj +
m∑
i=1

n∑
j=1

cijxij

s.t.
n∑

j=1

xij = 1 ∀ i = 1, . . . ,m

xij ≤ yj ∀ i = 1, . . . ,m, j = 1, . . . , n

xij ∈ {0, 1} ∀ i = 1, . . . ,m, j = 1, . . . , n

yj ∈ {0, 1} ∀ j = 1, . . . , n

Lecture 3 Integer Programming

17/36

Integer Programs
Example 7: Piece-wise Linear Cost Objectives

Consider a piece-wise linear objective function f with a1, . . . , ak break
points as shown in the figure.

Any feasible x can be written as a
convex combination of the a values,
i.e.,

∑k
i=1 λiai . Are the λ values

unique?

Suppose yi is 1 if x ∈ [ai , ai+1], and
zero otherwise. If yi = 1, we can
write x = λiai + λi+1ai+1.

Assume that λs are also decision variables. To make them unique, we can

let λs take non-negative values depending on ys. Formulate the problem

of minimizing the function as a MIP.

Lecture 3 Integer Programming

18/36

Integer Programs
Example 7: Piece-wise Linear Cost Objectives

If yi is 1, only λi and λi+1 can take non-negative values. Suppose the
objective is separable with respect to the decision variables.

min
k∑

i=1

λi fi (ai)

s.t.
k∑

i=1

λi = 1

k−1∑
i=1

yi = 1

λ1 ≤ y1

λi ≤ yi−1 + yi ∀i = 2, . . . , k − 1

λk ≤ yk−1

λi ≥ 0 ∀i = 1, . . . , k

yi ∈ {0, 1} ∀i = 1, . . . , k − 1

Lecture 3 Integer Programming

19/36

Integer Programs
Example 8: Disjunctive Constraints

Suppose we have two either-or-or type constraints
∑n

j=1 a1jxj ≤ b1 and∑n
j=1 a2jxj ≤ b2, where at least one of them must be satisfied.

n∑
j=1

a1jxj ≤ b1 +M1(1− y1)

n∑
j=1

a2jxj ≤ b2 +M2(1− y2)

y1 + y2 = 1

y1, y2 ∈ {0, 1}

▶ What is a good choice of M1 and M2? How do you model the
problem if the first constraint was of the ≥ type?

▶ What if we had m constraints of which at least k constraints must
be satisfied?

Lecture 3 Integer Programming

20/36

Integer Programs
Example 8: Disjunctive Constraints

Disjunctive constraints are common in many problems such as scheduling.
Consider two jobs with processing times p1 and p2. Depending on the
order in which they are carried out, the start times must satisfy either one
of the two constraints t2 ≥ t1 + p1 and t1 ≥ t2 + p2 must hold.

In special cases, where the constraints are of the form
∑n

j=1 a1jxj ≥ b1 and∑n
j=1 a2jxj ≥ b2 and the coefficients of the constraints are all non-negative

and x ≥ 0, it is possible to model disjunctive constraints without using M.

n∑
j=1

a1jxj ≥ y1b1

n∑
j=1

a2jxj ≥ y2b2

y1 + y2 = 1

y1, y2 ∈ {0, 1}

Lecture 3 Integer Programming

21/36

Integer Programs
Example 9: Conditional Constraints

Suppose we have a scenario where if a constraint
∑n

j=1 a1jxj ≤ b1 is

satisfied, then
∑n

j=1 a2jxj ≤ b2 must hold.

This is equivalent to
∑n

j=1 a1jxj > b1 or
∑n

j=1 a2jxj ≤ b2.

Using strict inequalities in pure integer programming models is not an issue
unlike in LPs. (Why?) However, since the solution methods exploit LP
methods, we use sufficiently small ϵ variables.

Thus, we can recast the problem as disjunctive constraints
∑n

j=1 a1jxj ≥
b1 + ϵ or

∑n
j=1 a2jxj ≤ b2.

Lecture 3 Integer Programming

22/36

Integer Programs
Example 10: Product Terms

In some cases it is possible to eliminate product terms of the type x1x2
using integer variables.

Case 1: Suppose both x1 and x2 are binary.

y ≤ x1

y ≤ x2

y ≥ x1 + x2 − 1

y ∈ {0, 1}

Case 2: Suppose x1 is binary and x2 ∈ [0, u] is continuous.

y ≤ ux1

y ≤ x2

y ≥ ux1 + x2 − u

y ∈ {0, 1}

Lecture 3 Integer Programming

23/36

Integer Programs
Example 10: Product Terms

Case 3: Suppose both x1 ∈ [l1, u1] and x2 ∈ [l2, u2] are continuous. In
this case, it is not possible to convert product terms to linear variables.
Instead, one could approximate it as a separable objective and use a piece-
wise linear approximation.

y1 = 0.5(x1 + x2)

y2 = 0.5(x1 − x2)

x1x2 = y2
1 − y2

2

Lecture 3 Integer Programming

24/36

Integer Programs
Example 11: Exclusions

Suppose we wish to exclude a certain point y from the feasible region
X = {x ∈ Zn : Ax ≤ b}.

We can add a constraint to eliminate
the boxed portion around y.

n∑
i=1

|xi − yi | ≥ 1

However, this is non-linear, and hence we introduce auxiliary variables
zi = |xi − yi |. But we do not know how the xs appear in the objective to
try a min-max trick. Hence, we replace the above constraint with

n∑
i=1

zi ≥ 1

zi ≤ |xi − yi | ∀i = 1, . . . , n

Lecture 3 Integer Programming

25/36

Integer Programs
Example 11: Exclusions

If xi − yi ≥ 0, then we want the second constraint to take the form
zi ≤ xi − yi , else it would imply zi ≤ −(xi − yi). Thus, we write

n∑
i=1

zi ≥ 1

zi ≤ xi − yi +Miwi ∀i = 1, . . . , n

zi ≤ −(xi − yi) +Mi (1− wi) ∀i = 1, . . . , n

wi ∈ {0, 1} ∀i = 1, . . . , n

But the ws should be connected to x − y . Specifically, if xi − yi ≥ 0, we
want wi to be 1 and 0 otherwise. To model this, we add the following
inequalities

xi − yi ≤ Niwi ∀i = 1, . . . , n

− (xi − yi) ≤ Ni (1− wi) ∀i = 1, . . . , n

Lecture 3 Integer Programming

26/36

Integer Programs
Example 12: Miscellaneous

How do you set constraints that force a decision variable x to take values
only in {a1, . . . , an}?

x =
n∑

i=1

yiai

n∑
i=1

yi = 1

yi ∈ {0, 1} ∀i = 1, . . . , n

This is an example of a special ordered set (SOS) constraint that we will
revisit in subsequent lectures.

Lecture 3 Integer Programming

27/36

Lecture Outline

Strong Formulations

Lecture 3 Integer Programming

28/36

Strong Formulations
Convex Hulls and Relaxations

Most methods for solving integer programs rely on relaxations and LP
solutions.

An ideal LP relaxation coincides with the convex hull of feasible points.

(Why?)

Lecture 3 Integer Programming

29/36

Strong Formulations
Convex Hulls and Relaxations

Consider the following feasible set of points

X = {(1, 1), (2, 1), (3, 1), (1, 2), (2, 2), (3, 2), (2, 3)}

There are infinitely many relaxation
formulations that can lead to this fea-
sible region.

Can you tell which of the three for-
mulations P1, P2, and P3 are strong?
What about their LP relaxations?

In general, if P1 and P2 are two formulations of an IP, P1 is a stronger

formulation than P2 if P1 ⊂ P2.

Lecture 3 Integer Programming

30/36

Strong Formulations
Convex Hulls and Relaxations

Suppose the feasible region of an IP problem is X = {x1, . . . , xk}. Then,
the solution to the integer program

min cTx

s.t.x ∈ X

is the same as the solution to the linear program

min cTx

s.t.x ∈ Conv(X)

where Conv(X) =
{∑k

i=1 λixi :
∑k

i=1 λi = 1, λi ≥ 0, xi ∈ X
}

In theory, Conv(X) = {x : Aconvx ≤ bconv}, but finding the inequalities

which make up this polyhedron is difficult. The above ideas extend to

MIPs in the same way.

Lecture 3 Integer Programming

31/36

Strong Formulations
Knapsack problem

Consider three formulations for the knapsack problem.

P1 = {x ∈ [0, 1]4 : 83x1 + 61x2 + 49x3 + 20x4 ≤ 100}
P2 = {x ∈ [0, 1]4 : 4x1 + 3x2 + 2x3 + 1x4 ≤ 4}
P3 = {x ∈ [0, 1]4 : 4x1 + 3x2 + 2x3 + 1x4 ≤ 4, x1 + x2 + x3 ≤ 1, x1 + x4 ≤ 1}

Do all of these formulations contain the same set of integer solutions? Can
you order them on the basis of the strength of the formulations? How are
their LP relaxation solutions ordered?

Lecture 3 Integer Programming

32/36

Strong Formulations
Facility Location

In the facility location problem (say P1), we set xij ≤ yj to indicate that a
customer at i can be paired to a branch at j only if it is open, i.e., yj = 1.

Alternately, we can add all such constraints for i = 1, . . . ,m and write a
model P2 for which

m∑
i=1

xij ≤ myj ∀j = 1, . . . , n

Which of the two formulations is better? P2 has fewer constraints than
P1, but P1 ⊂ P2. Imagine x1 ≤ 1 and x2 ≤ 1 vs. x1 + x2 ≤ 2. (Although
the integer solutions in these two examples is not the same.)

Hence, if you solve the LP relaxations of the two problems, you may notice
that zLPP1

≥ zLPP2
.

Lecture 3 Integer Programming

33/36

Strong Formulations
Facility Location

Note that every (x , y) ∈ P1 is in P2 (Why?). To show that there exists
(x , y) ∈ P2 which is not in P1, consider the special case where m = kn,
where k ≥ 2. Assign each k customers to each branch. Let yj = k/m ∀ j =
1, . . . , n.

xij ≤ yj in formulation P1 is violated but
∑m

i=1 xij ≤ myj holds in P2.

Caution: Pay attention to formulations involving M. Choose the tightest
possible M for stronger formulations. Else, the LP relaxations, are going
to be weaker.

Lecture 3 Integer Programming

34/36

Strong Formulations
Comparing Extended Formulations

There is more than one way to skin a cat but not all formulations can be
easily compared as we just saw. One could write alternate formulations
that give the same optimal solutions but the spaces in which the feasible
point lie could be different.

Consider the lot sizing problem from before. Where do the feasible solu-
tions lie? Instead, define a new variable wkt which is the quantity produced
in period k to satisfy demand in period t. Can you model the constraints?

t∑
k=1

wkt = dt ∀t = 1, . . . , n

wkt ≤ dtyk ∀k ≤ t, t = 1, . . . , n

xk =
n∑

t=k

wkt ∀k = 1, . . . , n

wkt ≥ 0 ∀k ≤ t, t = 1, . . . , n

0 ≤ yt ≤ 1 ∀t = 1, . . . , n

Lecture 3 Integer Programming

35/36

Strong Formulations
Comparing Extended Formulations

Which of these two formulations are better? In such settings we make use
of the idea of projections to compare them on even footing.

Suppose relaxation of formulation P1 has decision
variables x ∈ P1 ⊆ Rn. Consider a new formulation
whose decision variables are of the type (x ,w) ∈
Q2 = X ×W ⊆ Rn × Rl .

We then define a projection of Q2 into the subspace Rn as follows

P2 = projx(Q2) = {x ∈ Rn : (x ,w) ∈ Q2 for some w ∈ W }

The new formulation is better only if P2 ⊂ P1. Using the point xt = dt
and yt = dt/M can you comment on the strength of the two lot sizing
formulations?

Lecture 3 Integer Programming

36/36

Your Moment of Zen

Source: xkcd

Lecture 3 Integer Programming

