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Single Depot VSP
Introduction

The Vehicle Scheduling Problem (VSP) deals with assigning vehicles (buses,
flights, ferries, trains) to scheduled time tables.

Assume that we are given a set of trips {T1, . . . ,Tn} and a single depot
D.

Let each trip i have a departure/start time di and arrival/end time ai .

Also suppose that trip i starts at a location pi and terminates at a location
qi .
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Single Depot VSP
Introduction

We assume that all vehicles start at the depot and return back to it.

Vehicles can deadhead from qi to pj without carrying passengers and incur
a cost cij and take tij units of time.

Deadheading between trips Ti and Tj are allowed only if they are compat-
ible, i.e., ai + tij > dj .

The goal is usually either minimize the number of vehicles used or the total
cost of deadheading.
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Single Depot VSP
Network Flow Formulation – Version I

There are multiple ways to formulate this problem. We first create a graph
G = (N,A) with departure event nodes, arrival event nodes, and the depot
(or two copies of it say Dd and Da).
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Single Depot VSP
Network Flow Formulation – Version I

Three types of edges are included in the graph:

▶ Pull-in and pull-out arcs from and to depot (grey) A1

▶ Trip arcs (green) A2

▶ Compatible arcs (blue) A3
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Single Depot VSP
Network Flow Formulation – Version I

Only deadheading of pull-in and pull-out arcs and compatible arcs matter.
(Why?)

Formulate the problem as a min-cost network flow problem.

min
∑

(i,j)∈A1∪A3

cijxij

s.t. x(δ+(i)) = x(δ−(i)) i ∈ {d1, . . . , dn} ∪ {a1, . . . , an}
xij = 1 ∀ (i , j) ∈ A2

xij ∈ {0, 1} ∀ (i , j) ∈ A

Is constraint matrix totally unimodular? How do we model the problem of
minimizing the number of vehicles used?
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Single Depot VSP
Solution
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Single Depot VSP
Network Flow Formulation – Version II

Alternatively instead of representing events, a trip is represented as a node.
Write a network flow formulation for this network.
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(Trips have been moved horizontally for visualization purposes.)
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Single Depot VSP
Network Flow Formulation – Version II

min
∑

(i,j)∈A

cijxij

s.t. x(δ+(i)) = 1 i ∈ {T1, . . . ,Tn}
x(δ+(i)) = x(δ−(i)) ∀ i ∈ {T1, . . . ,Tn}
xij ∈ {0, 1} ∀ (i , j) ∈ A

One could also impose restrictions on the fleet sizes using additional con-
straints.
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Single Depot VSP
Network Flow Formulation – Version III

A third formulation can be written that moves the trip flows to demands
to make it appear in a more familiar form on a slightly modified network.
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Single Depot VSP
Network Flow Formulation – Version III

Let bi indicate the demands which is set to +1 for the arrival nodes and
-1 for the departure nodes.

min
∑

(i,j)∈A

cijxij

s.t. x(δ+(i))− x(δ−(i)) = bi ∀ i ∈ N

0 ≤ xij ≤ 1 ∀ (i , j) ∈ A
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Single Depot VSP
Matching Problem

The SDVSP problem can also be modeled as a bipartite matching problem
using the compatible edges when minimizing the number of vehicles.
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The optimal solution is n− optimal cardinality of the above matching.
(Why?)
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Lecture Outline

Multi Depot VSP
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Multi Depot VSP
Introduction

The SDVSP can be solved in polynomial time. However, in most scenarios
there are multiple depots.

Suppose the system has depots D1,D2, . . . ,Dk . Each depot is assumed to
have a capacity νk . Let K = {1, 2, . . . , k}

Suppose vehicles can start at any depot and end at any depot as long as
the capacity limits are met.

Can you solve this using an optimization model? What is the complexity
of this variant.
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Multi Depot VSP
Introduction

In the more general setting, vehicles are tagged to depots and start and
end their trips at the same depot.

This helps with servicing and maintenance activities. Formulate this ver-
sion using an optimization model.

Create k layers G k = (V k ,Ak) or copies of the network, where V k =
{T1, . . . ,Tn,D

a
k ,D

d
k }. The arc set for each graph is similar to before.

The pull-in and pull-out arc costs can now be depot-dependent.
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Multi Depot VSP
Introduction
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Multi Depot VSP
Introduction

Let xkij be 1 if a link (i , j) in layer k is traversed and is 0 otherwise.

min
∑
k∈K

∑
(i,j)∈Ak

ckij x
k
ij

s.t.
∑
k∈K

xk(δ+(i)) = 1 i ∈ {T1, . . . ,Tn}

xk(δ+(i)) = xk(δ−(i)) ∀ i ∈ {T1, . . . ,Tn}, k ∈ K

xk(δ+(Dd
k )) ≤ νk ∀k ∈ K

xkij ∈ {0, 1} ∀ (i , j) ∈ Ak , k ∈ K
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Multi Depot VSP
Column Generation

Just as the VRP, one can also formulate this using a set-packing formula-
tion. This allows us to impose rotation/duty-specific constraints.

Let Ωk be rotations that start from a depot Dk , visits a few trips and
comes back to the same depot.

min
∑
k∈K

∑
p∈Ωk

cpyp

s.t.
∑
p∈Ωk

yp ≤ νk ∀ k ∈ K

∑
k∈K

∑
p∈Ωk

aipyp = 1 ∀ i ∈ {T1, . . . ,Tn}

yp ∈ {0, 1} ∀ p ∈ Ωk , k ∈ K
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Multi Depot VSP
Column Generation

Can you write the pricing problem formulation for the LP relaxation of the
RMP?

min − σk +
∑

(i,j)∈Ak

(cij − πj)x
k
ij

s.t. xk(δ+(i))− xk(δ−(i)) =


1 if i = Dd

k

−1 if i = Da
k

0 otherwise

xkij ∈≥ 0 ∀ k ∈ K , (i , j) ∈ Ak
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The End

Feedback?
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Your Moment of Zen
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