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Previously on Transportation Logistics

The two-index formulation keeps track of binary variables xij which is 1 if
arc (i , j) is used and is 0 otherwise.

min
∑

(i,j)∈A

cijxij

s.t. x(δ+(0)) = x(δ−(0)) = |K |
x(δ+(i)) = 1 ∀ i ∈ N\{0}
x(δ−(i)) = 1 ∀ i ∈ N\{0}
x(δ+(S)) ≥ r(S) ∀S ⊆ N\{0},S ̸= ∅
xij ∈ {0, 1} ∀ (i , j) ∈ A

The fourth constraint, also called as the capacity-cut constraints (CCC)
addresses both capacity limits as well as prevents sub-tours.
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Previously on Transportation Logistics

Suppose J is a set of tours which are feasible (satisfy capacity constraints).
Let aij be 1 if tour j visits customer i and is 0 otherwise.

Define cj as the cost of the tour and yj as a binary variable which is 1 if
tour j is chosen.

min
∑
j∈J

cjyj

s.t.
∑
j∈J

yj = |K |

∑
j∈J

aijyj = 1 ∀ i ∈ V \{0}

yj ∈ {0, 1} ∀ j ∈ J
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Lecture Outline
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Lecture Outline

TSP and VRP Games
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TSP and VRP Games
Introduction

Suppose a traveler is sponsored by the places they visit (imagine a speaker
going to different events to give talks). What is a fair way to distribute
the cost of the tour among the sponsors?

In the VRP context, how much should each customer pay for the set of
routes that the trucks take.

These are examples of co-operative games where the players are the cities
or sponsors in the case of TSP and customers in the VRP case.

Cost allocations must be designed such that subsets of players do not
withdraw and form smaller coalitions.
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TSP and VRP Games
Example

Suppose each customer has a unit demand and we have three vehicles with
capacity two. What is the optimal VRP solution? How should we divide
the cost?

1

2 3

0

1.7 1.7

1.7

1 1

1

What if customer 1 has two units of demand?
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Lecture Outline

Core

Lecture 18 Collaborative Logistics



9/26

Core
Cost Allocations

Suppose yi is the cost assigned to customer i ∈ N. What are some desirable
conditions that ys must satisfy to make the allocation fair?

Let c(S) be the optimal VRP solution for serving customers in a subset
S ⊂ N. This is also called the characteristic function.

Then, the following conditions should be acceptable to the customers and
no one has an incentive to deviate.∑

i∈N

yi = c(N) Efficiency∑
i∈S

yi ≤ c(S) ∀ S ⊂ N Core-Defining Inequality (CDI)

The CDI condition captures individual rationality when S is a singleton.

Lecture 18 Collaborative Logistics



10/26

Core
Cost Allocations

Properties of the characteristic function:

▶ Monotonicity: c(S) ≤ c(T ) if S ⊂ T ⊂ N

▶ Subadditivity: c(S) + c(T ) ≥ c(S ∪ T ), ∀ S ,T ⊂ N,S ∩ T ̸= ∅

The set of all ys that satisfy the previously defined conditions are called
the Core and denoted as C . Show that each y ∈ C is non-negative.

How many CDIs are needed to define C? Can we reduce them?
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Core
Core Defining Inequalities

Suppose S is the set of all customers who can be serviced by a single truck,
i.e.,

∑
i∈S di ≤ C , where S ∈ S. We will call this a feasible coalition.

Theorem

CDIs defined for S ′ /∈ S and S ′ ⊂ N are redundant.

Proof.

(WTS)
∑

i∈S′ yi ≤ c(S ′), given
∑

i∈S yi ≤ c(S) ∀ S ∈ S

Suppose the optimal VRP partition for S ′ is {S1, S2, . . . , Sm}
m∑
j=1

∑
i∈Sj

yi =
∑
i∈S′

yi

m∑
j=1

c(Sj) = c(S ′)

Adding CDIs for feasible coalitions,
∑m

j=1

∑
i∈Sj

yi ≤
∑m

j=1 c(Sj), it follows that

the CDI for S ′ is redundant. ■
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Core
Key Results

Theorem

Consider an optimal VRP partition S1, . . . ,Sm. Then∑
i∈Sj

yi = c(Sj) ∀ y ∈ C , j = 1, . . . ,m

Proof.

c(N) =
∑
i∈N

yi =
m∑
j=1

∑
i∈Sj

yi ≤
m∑
j=1

c(Sj) = c(N)

■
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Core
Key Results

Theorem

The core of a VRP game is non-empty iff its LP relaxation objective
equals the integral solution zLP = zIP .

Proof.

The core is non-empty iff the following problem has an objective z ′ ≥ c(N).

z ′ =max
∑
i∈N

yi

s.t.
∑
i∈S

yi ≤ c(S) ∀ S ∈ S

Write the dual of the above problem. z ′ = zLP ≤ zIP . Therefore,

z ′ ≥ c(N) ⇔ zLP = zIP . ■
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Core
Core Defining Inequalities

In summary, given an optimal VRP partition of N as S1, . . . ,Sm, the core
comprises of cost allocations y that satisfy

C =

{
y
∣∣∣ ∑

i∈Sj

yi = c(Sj) ∀ j ∈ {S1, . . . ,Sm}∑
i∈S

yi ≤ c(S),S ∈ S \ {S1, . . . ,Sm}

∑
i∈N

yi = c(N)

}
This set may contain uncountable number of cost-allocations. So, which
one should we pick?
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Lecture Outline

Nucleolus
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Nucleolus
Introduction

Given a cost allocation vector y , the excess of S is defined as c(S) −∑
i∈S yi .

Coalitions with the smallest excess are the most disappointed. Hence a
cost allocation y1 is better than y2 if

min
S∈S

{
c(S)−

∑
i∈S

y1
i

}
> min

S∈S

{
c(S)−

∑
i∈S

y2
i

}

Suppose we sort the excess vector in R|S| in increasing order. Consider cost
allocations that satisfy the efficiency and individual rationality conditions.

Y =
{
y
∣∣ ∑

i∈N

yi = c(N); yi ≤ c({i})
}
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Nucleolus
Excess

The goal could then be to find the cost allocation that maximizes the
minimum excess among all feasible coalitions.

The nucleolus is a cost allocation vector y ∈ Y that has the greatest
lexicographically ordered excess vector. E.g., [1, 3, 5, 6] ≻ [1, 3, 4, 8].

Calculate the nucleolus in the previous example.

1

2 3

0

1.7 1.7

1.7

1 1

1
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Nucleolus
Row Generation

The problem of finding the nucleolus can be cast as

maxmin
S∈S

{
c(S)−

∑
i∈S

yi

}
s.t. y ∈ Y

What kind of an optimization problem is this? Converting it into an LP

maxw

s.t. w ≤ c(S)−
∑
i∈S

yi ∀ S ∈ S

y ∈ Y

The number of constraints is exponential and hence we can solve this
problem using a row generation approach.
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Nucleolus
Row Generation

Let Ω ⊆ S be a subset of feasible coalitions. The restricted master problem
(RMP) can be written as

maxw

s.t. w ≤ c(S)−
∑
i∈S

yi ∀ S ∈ Ω

y ∈ Y

Based on the solution y∗,w∗, we can find if the left-out constraints are
violated by solving a new optimization sub-problem

min−w∗ + c(S)−
∑
i∈S

y∗
i

s.t. S ∈ S \ Ω

When do we terminate the RMP? What kind of an optimization problem
is this?
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Nucleolus
Row Generation

Define a vector s such that si = 1 if i in coalition S and is 0 otherwise.
Using this definition, we can rewrite the constraint S ∈ S \ Ω as (why?)∑

{i :s ji =0}

si +
∑

{i :s ji =1}

(1− si ) ≥ 1 ∀ j such that Sj ∈ Ω

Therefore, the sub-problem can be rewritten as

min−w∗ + c(s1, . . . , sn)−
∑
i∈N

y∗
i si

s.t.
∑

{i :s ji =0}

si +
∑

{i :s ji =1}

(1− si ) ≥ 1 ∀ j such that Sj ∈ Ω

y ∈ Y

This problem resembles the prize-collecting TSP with some additional con-
straints. Suppose we found a solution to the max-min nucleolus problem,
can we terminate?

What would happen if we did not have the extra constraints?
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Nucleolus
Lexicographic Ordering

If multiple cost allocations lead to the same w∗, ties are broken using the
next highest excess.

E.g., consider three cost allocations for which the excess vectors are

[1, 3, 5, 6], [1, 3, 4, 8], [1, 3, 7, 7]

The coalitions corresponding to the green excess values may be same or
different. Let Γ = {S1,S2,S3}.

Maximize the second lowest excess using a new optimization problem.

minw2

s.t. w2 ≤ c(S)−
∑
i∈S

yi ∀ S ∈ S \ Γ

w∗ = c(S)−
∑
i∈S

yi ∀ S ∈ Γ

y ∈ Y
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Nucleolus
Lexicographic Ordering

This process can be repeated by modifying these optimization problems
until a unique solution is found.

Since the number of constraints are again exponential, these problems can
also be solved using a row generation procedure.

In finding the nucleolus, why do we care about all feasible coalitions and
not just the ones in the optimal VRP partition?
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Nucleolus
Example

Consider the optimal solution shown below for a scenario with three vehicles
each with capacity of 30.



0 24 19 20 27 16 12
0 17 31 44 36 23

0 16 29 35 25
0 15 34 28

0 40 37
0 13

0


1

2

3

0

6

4

5

8

24
22

6

7

10

Write down the constraints for finding the core and the nucleolus.
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Nucleolus
Example

{1} 48 {1,3} 75 {1,5,6} 76
{2} 38 {1,4} 96 {1,4,5} 123
{3} 40 {1,5} 76 {1,4,6} 106
{4} 54 {1,6} 59 {4,5,6} 92
{5} 32 {2,4} 75
{6} 24 {3,4} 62

{3,5} 70
{4,5} 83
{4,6} 76
{5,6} 41

From the optimal solution, some of the constraints would appear with
equality conditions based on the earlier proposition. That is,

y2 = 38 y3 + y4 = 62 y1 + y5 + y6 = 76

If the core is empty, these would remain as ≤ constraints.
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Your Moment of Zen

Source: xkcd
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