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Previously on Transportation Logistics

The two-index formulation keeps track of binary variables xij which is 1 if
arc (i , j) is used and is 0 otherwise.

min
∑

(i,j)∈A

cijxij

s.t. x(δ+(0)) = x(δ−(0)) = |K |
x(δ+(i)) = 1 ∀ i ∈ N\{0}
x(δ−(i)) = 1 ∀ i ∈ N\{0}
x(δ+(S)) ≥ r(S) ∀S ⊆ N\{0},S ̸= ∅
xij ∈ {0, 1} ∀ (i , j) ∈ A

The fourth constraint, also called as the capacity-cut constraints (CCC)
addresses both capacity limits as well as prevents sub-tours.
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Previously on Transportation Logistics

Suppose J is a set of tours which are feasible (satisfy capacity constraints).
Let aij be 1 if tour j visits customer i and is 0 otherwise.

Define cj as the cost of the tour and yj as a binary variable which is 1 if
tour j is chosen.

min
∑
j∈J

cjyj

s.t.
∑
j∈J

yj = |K |∑
j∈J

aijyj = 1 ∀ i ∈ V \{0}

yj ∈ {0, 1} ∀ j ∈ J
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Previously on Transportation Logistics

If the costs satisfy triangle inequality, the problem can be formulated as a
covering problem.
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∑
j∈J

aijxj ≥ 1 ∀ i ∈ V \{0}

The solution can be repaired by adding a short-cut (7,9) or (5,0).

The advantage of using the covering version is that the feasible tours can
be replaced with maximal-feasible tours. For example, we need not have
tours 0-4-0, 0-4-10-0, and 0-4-10-5-0, in the above example.

Further, the dual space is more constrained for the covering problem.
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Previously on Transportation Logistics

Let decision variable wik indicate the start time of service at customer i by
vehicle k .

min
∑
k∈K

∑
(i,j)∈A

cijkxijk

s.t.
∑

k∈K xk(δ
+(i)) = 1 i ∈ N\{0, n + 1}

xk(δ
+(0)) = 1 ∀ k ∈ K

xk(δ
+(i)) = xk(δ

−(i)) ∀ i ∈ N\{0, n + 1}, k ∈ K

xk(δ
−(n + 1)) = 1 ∀ k ∈ K

wjk ≥ wik + si + tij −Mij(1− xijk) ∀ k ∈ K , (i , j) ∈ A

ai ≤ wik ≤ bi ∀ k ∈ K , i ∈ N∑
i∈N dixk(δ

+(i)) ≤ Ck ∀ k ∈ K

xijk ∈ {0, 1} ∀ (i , j) ∈ A, k ∈ K

What is a good choice of Mij? bi + si + tij − aj .
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Previously on Transportation Logistics

The reduced costs are evaluated using the duals of the master problem.
We begin with an initial set of columns J that guarantees feasibility of the
restricted master.

1 Solve the restricted master problem

min
∑
j∈J

cjxj

s.t.
∑
j∈J

A.jxj = b

xj ≥ 0 ∀ j ∈ J

Suppose y represents the optimal dual solution.

2 Solve the sub-problem zsub = minj∈Jc (cj − yTA.j). Let j
∗ be the

optimal solution.

3 If zsub < 0, J ← J ∪ {j∗} and go to Step 1, else terminate.
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Previously on Transportation Logistics

Define dual variables w1 and w2 for the first and second constraint of the
LP relaxation of the restricted version of this master problem.

The first constraint can be written in standard form using a slack but that
does not affect the pricing problem.

The reduced cost is therefore

c̄p = cp −
[
w1 w2

] [tp
1

]
= cp − w1tp − w2

To find a path which minimizes this expression, what are the decision
variables? Can we write this as an optimization problem involving link
flow variables?

Note that w1 and w2 are constants in the following pricing sub-problem.
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Previously on Transportation Logistics

Note that the pricing problem does not have the complicating constraint.
Hence, standard labeling methods can be used. The arc weights can be
negative and hence we should ensure that the path is elementary.

zsub = min
∑

(i,j)∈A

cijxij − w1tijxij − w2

s.t.
∑

j :(i,j)∈A

xij −
∑

h:(h,i)∈A

xhi =


1 if i = s

−1 if i = t

0 otherwise

xij ∈ {0, 1} ∀ (i , j) ∈ A

If zsub < 0, then we add the new path formed by the links belonging to
the path to the RMP and resolve it to get new dual variables.

Apply this method to find the optimal resource constrained path in the
earlier instance.
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Lecture Outline

1 VRP Reformulations

2 Elementary Shortest Paths with Resource Constraints
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Lecture Outline

VRP Reformulations
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VRP Reformulations
Set-partitioning Version

Consider the set-partitioning version of the VRP. This model is generic and
can handle capacity and time window constraints since we only pick those
tours P which satisfies those constraints.

Suppose, we let some of the vehicles be unused, then we can write the
formulation as

min
∑
p∈P

cpyp

s.t.
∑
p∈P

aipyp = 1 ∀ i ∈ V \{0}

yp ∈ {0, 1} ∀ p ∈ P

Write the pricing problem for this formulation for the CVRP and the
CVRPTTW.
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VRP Reformulations
Set-cover Version

Now consider a variant in which a customer can be visited more than once.
Recall that if triangle inequality is satisfied, we can repair this solution.

Here, aij indicates the number of times route j visits customer i .

min
∑
p∈P

cpyp

s.t.
∑
p∈P

aipyp ≥ 1 ∀ i ∈ V \{0}

yp ∈ {0, 1} ∀ p ∈ P

Is the pricing problem different for this variant? Does it have a higher/lower
LP relaxation objective compared to the previous partition version?

Lecture 17 Branch and Price for VRPs



13/32

Lecture Outline

Elementary Shortest Paths with Resource
Constraints
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ESPPRC
Introduction

For solving LP relaxations of VRPs, it is necessary to find the elementary
shortest paths which turns out to be NP-hard.

Also, the underlying graphs for this problem can have negative edge weights
(why?), which needs to be factored while designing any algorithm.
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ESPPRC
Introduction

Consider a graph G = (N,A), an origin s and destination t. Each arc (i , j)
has a cost cij . No non-negativity constraints on the costs are assumed.

Also assume L resources that are tracked by the traveler. Let d l
ij ≥ 0

be the consumption of resource l on arc (i , j). The resource vectors are
assumed to follow triangle inequality.

Each node i has resource limits [ali , b
l
i ] which are to be honored by every

feasible path from s to i . These limits could represent time windows or
capacities (say [0,C ]).

Formulate the problem of finding the elementary path with the lowest cost
while satisfying resource constraints as an integer program.
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ESPPRC
MIP Formulation

Let binary decision variables xij indicate if arc (i , j) is chosen and let uli be
the consumption level of resource l at node i .

min
∑

(i,j)∈A

cijxij

s.t. x(δ+(i))− x(δ−(i)) =


1 if i = s

−1 if i = t

0 otherwise

∀i ∈ N

ulj ≥ uli + d l
ij −Mij(1− xij) ∀ (i , j) ∈ A, l ∈ {1, . . . , L}

ali ≤ uli ≤ bli ∀ (i , j) ∈ A, l ∈ {1, . . . , L}
xij ∈ {0, 1} ∀ (i , j) ∈ A

The formulation resembles a TSP with time windows and is closer to the
prize collecting TSP since we need not visit all customers.
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ESPPRC
Preliminaries

Instead of solving the above MIP using branch and bound, one can use
labeling methods to find optimal solutions (as well as other elementary
paths with negative reduced costs).

The algorithm we will discuss builds on the labeling method for the SPPRC
(where cycles are allowed) by Desrochers et al. (1992).

In this method, for each node i , we maintain a list of labels, each of which
corresponds to a path from s to i and the corresponding resource utilization
vectors.
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ESPPRC
Preliminaries

For a given node i , downstream arcs (i , j) are relaxed by updating their
labels by extending the labels of node i .

For a path p from s to i , we maintain labels of the form (Rp
i ,C

p
i ), where

Rp
i = (Up1

i , . . . ,UpL
i ) is a list of resources used and C p

i is the cost of the
path.

What is the problem with this method? This can lead to an exponential
number of labels as the number of paths grows exponentially.
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ESPPRC
Dominance

To address this issue, dominance rules are applied to prune labels (and
paths) that violate resource constraints or might be sub-optimal.

Given two distinct paths p and q to node i , we say that p dominates q iff
Upl
i ≤ Uql

i ∀l ∈ L and C p
i ≤ C q

i , and (Rp
i ,C

p
i ) ̸= (Rp

i ,C
p
i ).

At any stage if any of the resource constraints are violated, we do not
extend the label to the successor nodes.
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ESPPRC
SPPRC – Labeling Algorithm

Consider the following network with a single resource. Starting with node
1, update the labels of the successors.

1 4

2

3

(2, 2)

ji
(dij, cij)  

(2, 2)

(1, 1) (1, -2)

(2, 2)

[0, 0]

(2, 2)
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ESPPRC
SPPRC – Labeling Algorithm

1 4

2

3

(2, 2)

(2, 2)

(1, 1) (1, -2)

(2, 2)

(2, 2)

[0, 0]

[2, 2]

[2, 2]

1 4

2

3

(2, 2)

(2, 2)

(1, 1) (1, -2)

(2, 2)

(2, 2)

[2, 2], [3, 0]

[0, 0]

[2, 2]

[4, 4]
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ESPPRC
SPPRC – Labeling Algorithm

1 4

2

3

(2, 2)

(2, 2)

(1, 1) (1, -2)

(2, 2)

(2, 2)

[4, 4], 
[5, 2]

[2, 2], [3, 0]

[0, 0]

[2, 2], [4, 1]

1 4

2

3

(2, 2)

(2, 2)

(1, 1) (1, -2)

(2, 2)

(2, 2)

[4, 4], 
[5, 2]

[2, 2], [3, 0]

[0, 0]

[2, 2]

Do we terminate?
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ESPPRC
SPPRC – Labeling Algorithm

Let us relax the edges going out of node 2 again. Why don’t we add a
label [5, 3] to node 4?

1 4

2

3

(2, 2)

(2, 2)

(1, 1) (1, -2)

(2, 2)

(2, 2)

[4, 4], 
[5, 2]

[2, 2], [3, 0], [5, -1]

[0, 0]

[2, 2], [4, 1]

The algorithm will converge if we have resource constraints at the nodes
and might cycle a few times between nodes 2 and 3, else, it might be
unbounded.
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ESPPRC
Labeling Algorithm

To extend this method to the case where we do not allow cycles between
nodes, we add more labels representing a unit visitation resource associated
with each node V pj

i .

In addition, we also keep track of the nodes visited by a path p that
connects s to i using mp

i , which helps us check the dominance rules faster.

Given two distinct paths p and q from s to i , with labels (Rp
i ,C

p
i ) and

(Rq
i ,C

q
i ). We say p dominates q iff C p

i ≤ C q
i , m

p
i ≤ mq

i , U
pl
i ≤ Uql

i ∀ l ∈
L, V pj

i ≤ V qj
i ∀ j = 1, . . . , n and (Rp

i ,C
p
i ) ̸= (Rq

i ,C
q
i ).

This is a weaker version and can be further strengthened to limit the
number of labels generated.
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ESPPRC
Labeling Algorithm

Let us initialize the labels as shown below. The resource limits are not
explicitly added in this example. One could prune a few labels if they were
present.

1 4

2

3

(2, 2)

ji
(dij, cij)  

(2, 2)

(1, 1) (1, -2)

(2, 2)

[0, 0, (1,0,0,0)]

(2, 2)
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ESPPRC
Labeling Algorithm

1 4

2

3

(2, 2)

(2, 2)

(1, 1) (1, -2)

(2, 2)

[0, 0, (1,0,0,0)]

(2, 2)

[2, 2, (1,1,0,0)]

[2, 2, (1,0,1,0)]

1 4

2

3

(2, 2)

(2, 2)

(1, 1) (1, -2)

(2, 2)

[0, 0, (1,0,0,0)]

(2, 2)

[2, 2, (1,1,0,0)]

[2, 2, (1,0,1,0)] [3, 0, (1,1,1,0)]

[4, 4, (1,1,0,1)]

Lecture 17 Branch and Price for VRPs



27/32

ESPPRC
Labeling Algorithm

1 4

2

3

(2, 2)

(2, 2)

(1, 1) (1, -2)

(2, 2)

[0, 0, (1,0,0,0)]

(2, 2)

[2, 2, (1,1,0,0)]

[2, 2, (1,0,1,0)] [3, 0, (1,1,1,0)]

[4, 4, (1,1,0,1)]

[4, 4, (1,0,1,1)]

[5, 2, (1,1,1,1)]
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ESPPRC
Labeling Algorithm

1 4

2

3

(2, 2)

(2, 2)

(1, 1) (1, -2)

(2, 2)

[0, 0, (1,0,0,0)]

(2, 2)

[2, 2, (1,1,0,0)]

[2, 2, (1,0,1,0)] [3, 0, (1,1,1,0)]

[4, 4, (1,1,0,1)]

[4, 4, (1,0,1,1)]

[5, 2, (1,1,1,1)]
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ESPPRC
Labeling Algorithm

Algorithm 1: ESPPRC(s)

Step 1: Initialization
Λs ← ((0, . . . , 0), 0, (0, . . . , 0)} ;
Λi ← ∅ ∀ i ∈ N \ {s} ;
SEL← {s}

Step 2: Extend labels
while SEL ̸= ∅ do

Remove an element i from SEL ;
for j ∈ δ+(i) do

Fij ← ∅;
for λi ∈ Λi do

if j has not been visited then
Fij ← Fij ∪ {Extend(λi , j)};
Λj ← RemoveNonDominatedLabels(Fij ∪ Λj ) ;

end

end

end
if Λj was updated then

Add j to SEL if it is not already present
end

end
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ESPPRC
Labeling Algorithm

This ESPPRC algorithm was proposed by Feillet et al. (2004) along with
additional pruning steps that can be applied while extending the labels.

More sophisticated methods involving bi-directional search have been pro-
posed which are faster. The cspy library has a repository of these algo-
rithms.

The VRP problem involves tours that start at a depot and end at a depot.
So, can we apply these algorithms directly?

These methods only help solve the LP relaxations of the VRP problem. For
finding integer solutions, we would still have to branch on the fractional
variables.
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ESPPRC
Branch and Price

This method can be combined with BnB where at each BnB tree node, we
use column-generation to solve the set partitioning version of the VRP.

Several options exist for deciding how to branch. Empirically, branching
on the link variables xij is better than path/tour variables yp.

We can also generate these paths at the root node and let the solvers use
them to find integer solutions (Price and Branch). This method is easy to
implement but can lead to sub-optimal solutions.

Several families of TSP-based valid inequalities are known to be facet-
defining for VRPs. These can also be added to design branch, cut, and
price algorithms.
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Your Moment of Zen
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