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Previously on Transportation Logistics

The DFJ formulation using E -δ notation can be written as

min
∑
e∈E

cexe

s.t. x(δ(u)) = 2 ∀ u ∈ V

x(E (S)) ≤ |S | − 1 ∀S ⊂ V ,S ̸= ∅
xe ∈ {0, 1} ∀ e ∈ E

The formulation with the alternate SEC constraints take the form

min
∑
e∈E

cexe

s.t. x(δ(u)) = 2 ∀ u ∈ V

x(δ(S)) ≥ 2 ∀S ⊂ V ,S ̸= ∅
xe ∈ {0, 1} ∀ e ∈ E

We can further restrict 3 ≤ |S | ≤ |V |/2. (Why?)
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Lecture Outline

1 Bounds for TSPs

2 Metaheuristics
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Lecture Outline

Bounds for TSPs
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Bounds for TSPs
Introduction

Upper bounds

▶ LKH Heuristic

▶ Christofides-Serdyukov algorithm

▶ Nearest neighbour

Lower bounds

▶ Euclidean instances

▶ Lagrangian relaxation
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Bounds for TSPs
Introduction
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Bounds for TSPs
Introduction

Show that
MST ≤ TSP ≤ 2MST

This is hence called a 2-approximation algorithm. Christofides exploited
this technique to develop a 3/2-approximate algorithm.
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Lecture Outline

Heuristics

Lecture 15 Bounds and Heuristics for TSP



9/20

Heuristics
2-opt

Exact approaches involve adding cuts the LP relaxation and using a Branch-
and-Cut scheme.

Alternately, one could design heuristics that generate other tours from a
given tour and checks if the new solution has a lesser cost. Some commonly
used methods are:

▶ Flip Routines

▶ Insertion Routines
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Heuristics
2-opt

Suppose we flip the set of cities shown in blue in the following tour.

Jaipur–Ahmedabad–Mumbai–Chennai–Trivandrum–Bangalore–Panaji–Hyderabad–
Kolkata–Jaipur
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Jaipur–Ahmedabad–Mumbai–Panaji–Bangalore–Trivandrum–Chennai–Hyderabad–
Kolkata–Jaipur
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Heuristics
2-opt

Flipping routines can be viewed as replacing two edges of the original tour
with two new edges.

𝑗𝑗 + 1

𝑖 − 1 𝑖

𝑗𝑗 + 1

𝑖 − 1 𝑖

… , 𝑖 − 1, 𝑗, … , 𝑖, 𝑗 + 1, … … , 𝑖 − 1, 𝑖, … , 𝑗, 𝑗 + 1, …

Consider the symmetric TSP. The routine flip(j , i) is profitable only if

ci−1,j + ci,j+1 ≥ ci−1,i + cj,j+1

A solution is said to be 2-opt if we cannot get a cheaper tour by replacing
2 edges in the current tour with another set of 2 edges.
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Heuristics
2-opt

Alternately, we can insert tour segments at different locations. For exam-
ple, consider the tour

Jaipur–Ahmedabad–Panaji–Bangalore–Trivandrum–Chennai–Mumbai–Hyderabad–
Kolkata–Jaipur
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Remove the blue segment and insert it between Mumbai and Hyderabad

Jaipur–Ahmedabad–Mumbai–Panaji–Bangalore–Trivandrum–Chennai–Hyderabad–
Kolkata–Jaipur
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Heuristics
3-opt

Notice that in the process of inserting tour segments, we had to replace 3
edges in the original tour with 3 new edges.

Our earlier analysis can be extended to 3-opt solutions which cannot give
cheaper tours by replacing 3 edges with another set of 3 edges.

Some of the 3-opt moves can be obtained by sequential 2-opt moves, e.g.,
(b)-(g) (although we don’t know if the 2-opt moves are profitable).
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Heuristics
k-opt

The analysis can be extended to k-opt moves but the benefits tend to
decrease with increase in k.

Lin-Kernighan heuristic is one of the fastest TSP heuristic which uses
variable k-opt moves ([?])
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Heuristics
Simulated Annealing

Annealing involves heating a material to alter its physical properties and
then cooling it back.

At higher temperatures, the molecules in the material move freely and at
lower temperature they are restrained.

Similar ideas have been used to design heuristics where a wide search is
performed in the beginning and sub-optimality is encouraged.

However, as iterations pass, the temperature is reduced gradually and non-
optimal solutions are discarded.
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Heuristics
Simulated Annealing

Suppose x ′ is a neighbour of solution x and let f (.) denote the objective
function.

If f (x ′) ≤ f (x), update x ← x ′. Otherwise, update x ← x ′ with a
probability equal to exp(−(f (x ′)− f (x))/T ).

The temperature values are reduced gradually according to a cooling sched-
ule.
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Heuristics
Simulated Annealing
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Heuristics
Genetic Algorithms

Genetic algorithms are bio-inspired and maintain a population of solutions
at each stage.

The solutions are then bred to create child solutions or offsprings from
parent chromosomes and their objective or fitness functions are evaluated.

With a small probability, the population is also mutated to induce random
changes which facilitates the exploration of the solution space.
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Heuristics
Genetic Algorithms

New solutions are created using 1-point, 2-point crossovers, and uniform
crossovers.

Different problems requires different ways of representing chromosomes.
How would you represent the solution of a facility location problem?

Image Source: GeeksforGeeks
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Your Moment of Zen

Source: thedecisionlab
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