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Previously on Transportation Logistics

Consider an undirected graph G = (V ,E ). A matching M ⊆ E is a set of
disjoint edges (edges that do not have a node in common). A node cover
is a set N ⊆ V such that every edge has at least one end point in N.
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Formulate the maximum cardinality matching and minimum cardinality
cover problems using the set cover/packing/partitioning framework.
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Previously on Transportation Logistics

The DFJ formulation using E -δ notation can be written as

min
∑
e∈E

cexe

s.t. x(δ(u)) = 2 ∀ u ∈ V

x(E (S)) ≤ |S | − 1 ∀S ⊂ V ,S ̸= ∅
xe ∈ {0, 1} ∀ e ∈ E

The formulation with the alternate SEC constraints take the form

min
∑
e∈E

cexe

s.t. x(δ(u)) = 2 ∀ u ∈ V

x(δ(S)) ≥ 2 ∀S ⊂ V ,S ̸= ∅
xe ∈ {0, 1} ∀ e ∈ E

We can further restrict 3 ≤ |S | ≤ |V |/2. (Why?)
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Previously on Transportation Logistics

This method generalizes the previous two approaches on connectivity and
2-connectedness and can provide constraints that result in maximum vio-
lations of SECs.

The idea is to simply find the global min-cut between any s-t pair in the
support graph, i.e., find S ⊂ V such that min xLP(δ(S)). If this is 2, we
can generate a cut.

For instance, solving this would give 0 for disconnected graphs and an
objective less than or equal to 1 for support graphs that are not 2-connected
(e.g., {12, 13, 14, 15, 16} in the instance with LP solution = 682.5).
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Previously on Transportation Logistics

Consider a set of subsets H,T1,T2, . . . ,Tk of V satisfying the following
conditions.

▶ |Ti | = 2 and each Ti has a vertex in H and one in Hc .

▶ T1,T2, . . . ,Tk are pairwise disjoint.

▶ k ≥ 3 and is odd.

In this example, T1 = {1, 4}, T2 = {2, 5}, T3 = {3, 6}, and H = {4, 5, 6}.
The T sets are also called teeth and H is called the handle.
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Previously on Transportation Logistics

Subsets which satisfy these conditions are called blossoms and can be used
to generate Blossom inequalities or 2-matching inequalities of the form

x (δ(H)) +
k∑

i=1

x (δ(Ti )) ≥ 3k + 1

Using the degree constraints x(δ(S)) = 2|S |−2x(E (S))∀S ⊆ V (Why?).
Hence, blossom inequalities can also be written as

x(E (H)) +
k∑

i=1

x(E (Ti )) ≤ |H|+
k∑

i=1

|Ti | −
3k + 1

2
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Lecture Outline

1 Gomory-Hu Trees

2 Odd Min-cut Sets

3 Exact Separation of Blossoms
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Lecture Outline

Gomory-Hu Trees
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Gomory-Hu Trees
Introduction

The global min-cut problem for an undirected graph has an indirect role
to play in exact separation of Blossom inequalities.

Consider the problem of finding min-cuts on the network in the left panel
where the edge weights are capacities. Do you notice any connection to
the tree on the right?
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The min-cut between every pair of nodes in the graph is same as that in
the tree!
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Gomory-Hu Trees
Introduction

Finding the min-cuts in a tree is easy (Why?) What is the global min-cut
in a tree? How many steps are involved?

The following questions are worth exploring.

▶ Is it always possible to construct such a tree?

▶ If yes, can such a tree be discovered using an algorithm? What is its
complexity?

Let us first try to create such a tree.
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Gomory-Hu Trees
Iteration 1

Suppose we find the min cut between two arbitrary nodes, say 2 and 6.
The min cut is {1, 2} and {3, 4, 5, 6}.
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Let’s now try to split the partitions. Suppose we start with nodes 1 and 2.
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Gomory-Hu Trees
Iteration 2

We contract the rest of the nodes and find the min-cut between 1 and 2.
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The min-cut capacity is 18 and we expand the contracted node 1,2 to
create two nodes 1 and 2 in the tree.
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Gomory-Hu Trees
Iteration 3

Let us now try to split the contracted node 3,4,5,6. Suppose we select
nodes 3 and 6.

We contract everything connected to the branches of the contracted node
3,4,5,6 and find a min-cut between 3 and 6.
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The min-cut capacity is 13 and we expand the contracted node 3,4,5,6 to
create two nodes 6 and 3,4,5 in the tree.
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Gomory-Hu Trees
Iteration 4

Let us now try to split the contracted node 3,4,5. Suppose we select nodes
4 and 5.

We contract everything connected to the branches of the contracted node
3,4,5 and find a min-cut between 4 and 5.
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The min-cut capacity is 14 and we expand the contracted node 3,4,5 to
create two nodes 4 and 3,5 in the tree.
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Gomory-Hu Trees
Iteration 5

Finally, we split the contracted node 3,5.

We contract everything connected to the branches of the contracted node
3, 5, i.e., 1,2,6 and 4.
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The min-cut capacity is 15 and we expand the contracted node 3,5 to
create two nodes 3 and 5 in the tree. Note that the algorithm converges
in n − 1 iterations.
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Gomory-Hu Trees
Existence

It turns out that Gomory-Hu trees always exist because the capacity func-
tion is sub-modular.

More specifically, given a graph G = (V ,E ) and capacities c : E → R+,
define f : 2V → R+ using the capacities as f (S) = c(δ(S)).

This function turns out to be sub-modular. A function f : 2S → R is
submodular if for A,B ∈ 2S , f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B).
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Lecture Outline

Odd Min-Cut Sets
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Odd Min-Cut Sets
Introduction

An exact separation algorithm for finding violated blossom inequalities was
proposed by Padberg and Rao (1982).

This method uses a modified global-min cut problem called as the odd
minimum-cut set problem.

For this version, assume that vertices in the graph have labels odd and
even. Suppose, that the total number of odd nodes in the graph is even.
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Odd Min-Cut Sets
Definition

The odd minimum-cut set problem is to find a global min-cut that separates
the graph into two partitions with an odd number of odd nodes.

Define a label λ(S), where S ⊆ V , to be odd if S contains an odd number
of odd labelled nodes.

Mathematically, this problem can be written as

c(R,Rc) = min{c(S ,Sc) : S ⊆ V , λ(S) is odd}

where c(S ,Sc) is the capacity of the cut set (S ,Sc).

Theorem

Given a graph G = (V ,E ), let (S ,Sc) be the min-cut partitioning. Then,
there exists an odd minimum cut-set (R,Rc) such that R ⊂ S or R ⊂ Sc .
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Odd Min-Cut Sets
Example

What is the global-min cut in this network? Odd minimum-cut set?
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The consequence of the earlier theorem is that we can search for the odd
min cut-set separately on shrunk graphs obtained from S and Sc .
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Odd Min-Cut Sets
Algorithm

The following observations help in designing an algorithm for finding the
odd min-cut set. Recall that λ(V ) is even.

1 If the global min-cut (S ,Sc) is such that λ(S) is odd, then we
terminate and declare (S ,Sc) as the odd min-cut solution.

2 Else, we solve the global min cut problem recursively on contracted
graphs derived from S and Sc . The odd min-cut must belong to
one of these two graphs.

3 These graphs have even labels but contain at least two less odd
nodes than the original graph. If the global min-cut in these shrunk
graphs violates Condition 1, we repeat this process recursively.
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Odd Min-Cut Sets
Example

The global min-cut is 13 and the partition of vertices is {1, 2, 6} and
{3, 4, 5}.

Define two new graphs G 1 = (V 1,E 1) and G 2 = (V 2,E 2), where V 1 =
{1, 2, 6, {3, 4, 5}} and V 2 = {3, 4, 5, {1, 2, 6}} and edges as shown below.
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The odd min-cut is therefore min{17, 15}. Both these graphs yield odd
cut sets and hence we can terminate.
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Lecture Outline

Exact Separation of Blossoms
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Exact Separation of Blossoms
Introduction

How does this help identify a violated blossom inequality? Recall that
Blossom inequality is of the form

x (δ(H)) +
k∑

i=1

x (δ(Ti )) ≥ 3k + 1

Since x(δ(S)) = 2|S | − 2x(E (S))∀S ⊆ V ,

x(δ(Ti )) = 4− 2x(E (Ti ))

Suppose T represents the set of edges in the teeth, then the blossom
inequality can be written as

x (δ(H)) +
k∑

i=1

(
4− 2x(E (Ti ))

)
≥ 3k + 1

⇒x (δ(H)) + k − 2x(T ) ≥ 1

⇒x (δ(H) \ T ) + (|T | − x(T )) ≥ 1
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Exact Separation of Blossoms
Introduction

The left-hand side does not look like the edges of a cut.∑
e∈δ(H)\T

xe +
∑
e∈T

(1− xe) ≥ 1

But can we define a new graph and make it look like the cut capacity,
particularly the odd min-cut capacity?

If the min-cut capacity is less than 1, then we would have discovered a
violated Blossom inequality.

Note that the first term has xe and the second one has 1− xe . Hence, we
would have to create edges whose capacity is 1− xe .

Suppose the current solution is x̄ . Let E (x̄) be the edges of the support
graph. Let’s create a new graph G (x̄) = (W ,F ∪ F̄ ) as follows.
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Exact Separation of Blossoms
Introduction

Let the vertices W include the original vertices V and a new vertex for
every edge in E (x̄). That is, W = V ∪ E (x̄).
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Each edge e = {u, v}
in E (x̄) is split into
two edges {u, e} and
{e, v}.

Edge {u, e} is as-
signed a capacity xe
and {e, v} is assigned
a capacity 1− xe . Call
these edge sets F and
F̄ , respectively.
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Exact Separation of Blossoms
Introduction

Mark a node odd if it meets an odd number of nodes in F̄ , even otherwise.
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A min-odd cut in this graph identifies the handle and the cut edges identify
the tooth. Note in this example, the cut represents the

∑
e∈T (1−xe) term

and the other term is 0.
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Exact Separation of Blossoms
Introduction

Theorem

Let H ⊂ V and T ⊂ E (x̄) be such that

x (δ(H) \ T ) + (|T | − x(T )) < 1

Then there exists an odd cut set (S ,Sc) in G (x̄) such that

x (δ(H) \ T ) + (|T | − x(T )) = c(S ,Sc)

We can formally obtain the handle H = S ∩ V and the teeth using the
following construction

T =
{
e ∈ E (x̄) | ∃e′ ∈ (S ,Sc) such that e′ = {e, v}, v ∈ V , ce′ = 1−x̄e

}
Here (S ,Sc) is estimated with respect to the original graph G .
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Exact Separation of Blossoms
Generalization

Odd cuts are also referred to as T-cuts.

Blossom inequalities are also valid for general matching problems called
b-matching in which every vertex v can be matched to at most b(v) other
vertices.

The TSP problem without the SEC constraints is a special case of b-
matching and is also called a perfect 2-matching. In addition it has upper
bounds of 1 on the edge variables.
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Your Moment of Zen

Source: xkcd
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