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Previously on Transportation Logistics

Definition (Polytope)

A polyhedron P ⊂ Rn is bounded, also called a polytope, if there exists a
constant C > 0 such that |xi | ≤ C ∀ i = 1, . . . , n

All points inside a polytope can be expressed as a convex combination of
its extreme points. Mathematically, let X = {x : Ax ≥ b, x ≥ 0} be a
polytope.

X =

{
x : x =

k∑
i=1

λix
i ,λ ≥ 0,

k∑
i=1

λi = 1

}
Lecture 10 Polyhedral Theory



3/39

Previously on Transportation Logistics

How do you check if a given inequality, e.g., −11x1 + 4x2 ≤ 6 is valid?

Proposition

An inequality wTx ≤ w0 is a valid inequality for
X = {x : Ax ≤ b, x ≥ 0} ⇔ ∃ y ≥ 0, such that
ATy ≥ w and bTy ≤ w0.

Ax ≤ b
x ≥ 0

w

Proof.

wTx ≤ w0 is a valid inequality ⇔

w0 ≥max wTx

s.t. Ax ≤ b

x ≥ 0

The dual problem of the above LP is minbTy s.t., ATy ≥ w, y ≥ 0.
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Previously on Transportation Logistics

Apply the CG procedure for the earlier example using λ = (7/30, 0, 0, 1/10, 0).

−49

30
x1 +

7

10
x2 ≤ 0

− 2

10
x1 +

3

10
x2 ≤

9

10

Adding the above inequalities,

−55

30
x1 + x2 ≤

9

10 0 2 4
0

2

4

Rounding the LHS and RHS, we get −2x1 + x2 ≤ 0, which is one of the
inequalities describing the convex hull.
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Previously on Transportation Logistics

Consider the Knapsack constraint X = {x ∈ {0, 1}n :
∑n

j=1 ajxj ≤ b}. Let
N = {1, . . . , n}. Assume that b > 0 and aj > 0 for all j. Is this restrictive?

Definition (Cover)

A set C ⊆ N is a cover/dependent set if
∑

j∈C aj > b. A cover is
minimal if C\{j} is not a cover or any j ∈ C .

Determine all covers of 2x1 + 5x2 + 3x3 + x4 ≤ 6.

I Which of these are minimal?

I What kind of valid inequalities are implied by covers?

Proposition

If C ⊆ N is a cover for X , then
∑

j∈C xj ≤ |C | − 1 is valid for X .
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Previously on Transportation Logistics

Definition (Linear Independence)

A collection of vectors x1, . . . , xk ∈ Rn is linearly independent if
λ1x1 + λ2x2 + . . .+ λkxk = 0 implies that λi s are zeros.

The rank of a matrix is the number of linearly independent rows or columns.

Definition (Span)

A collection of vectors x1, . . . , xk ∈ Rn is said to span Rn if any vector
b ∈ Rn can be expressed as a linear combination of (x1, . . . , xk).

Definition (Basis)

A collection of vectors x1, . . . , xk ∈ Rn is said to form a basis if it spans
Rn and removing one vector results in a collection that does not span Rn.

A collection of vectors x1, . . . , xk ∈ Rn forms a basis of Rn iff k = n and
the vectors are linearly independent.
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Lecture Outline

1 Faces and Facets

2 Lifting Valid Inequalities
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Lecture Outline

Faces and Facets
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Faces and Facets
Background

Given a polytope X , we have methods to generate valid inequalities. But
we saw that not all valid inequalities are useful.

In this context, the following questions are of interest.

1 Which constraints/valid inequalities of X are redundant. This gives
us a “minimal description” of X .

2 More importantly, which valid inequalities of Conv(X ∩ Zn
+) “make

up” the convex hull.
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Faces and Facets
Background

Proposition (Dominance)

Let X = {x ∈ Rn
+ : Ax ≤ b}. Suppose (w,w0) and (v, v0) are valid for

X . wTx ≤ w0 is said to dominate vTx ≤ v0 if ∃ λ > 0 such that

w ≥ λv

w0 ≤ λv0
with at least one of the inequalities being strict.

In other words, every x that satisfies wTx ≤ w0 also satisfies vTx ≤ v0.
Can we write ⇒ in the definition?

Note that multiplying an inequality by a positive scalar will not change the
inequality.
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Faces and Facets
Background

Recall that non-negative linear combinations of valid inequalities generates
another valid inequality. Any inequality that is dominated can be removed
from the constraint set.

Definition (Redundance)

A valid inequality (w,w0) is redundant if ∃ k valid inequalities (wi ,w i
0)

and weights λi > 0 for i = 1, . . . , k such that

k∑
i=1

λiw
iTx ≤

k∑
i=1

λiw
i
0

dominates wTx ≤ w0.

A valid inequality that is not dominated by other valid inequality is said to
be maximal.
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Faces and Facets
Background

Using the definitions, can you determine which of the following inequalities
are redundant.

−7x1 + 3x2 ≤ 0

−2x1 − 3x2 ≤ −6

3x1 − 2x2 ≤ 6

−2x1 + 3x2 ≤ 9

−2x1 − 3x2 ≤ 17

−3x1 + x2 ≤ 1

x1 ≤ 4

x1, x2 ≥ 0
0 2 4

0

2

4

−3x1 + x2 ≤ 1 is dominated by −7x1 + 3x2 ≤ 0. Choose λ = 3. Likewise,
x1 ≤ 4 is redundant. (Why?)
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Faces and Facets
Affine Independence

Definition (Affine Independence)

A collection of vectors x1, . . . , xk ∈ Rn are affinely independent if the
unique solution to

∑k
i=1 λix

i = 0,
∑k

i=1 λi = 0 is that all the λi s are
zeros.

In other words, a collection of vectors are affinely independent if no vector
can be written as an affine combination of the other vectors.

The definition is equivalent to the following versions when k ≥ 2.

I (x1, 1), . . . , (xk , 1) are linearly independent. (Why?)

I x2 − x1, . . . , xk − x1 are linearly independent. (Why?)

Affine independence allows us to mathematically describe the dimension of
a polyhedra and identify hyperplanes that contribute to the convex hulls.
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Faces and Facets
Affine Independence

Affine independence can be viewed as shifting the origin to one of the
vectors and checking for linear independence.

Linearly
Independent

Affinely 
Independent

≡
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Faces and Facets
Affine Independence

Provide examples for the following scenarios in R3:

I Three linearly independent points.

I Four affinely independent points.

I Two vectors in that are linearly independent. Are they affinely
independent?

I A collection of vectors that are affinely independent but not linearly
independent.

Note that linear independence implies affine independence but not vice-
versa.
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Faces and Facets
Affine Independence

Three points in R3 are affinely independent if and only if there is a plane
passing through them.

I What is the maximum number of vectors that can be linearly
independent in Rn? Affinely independent?

I Can the origin vector be a part of a collection of linearly
independent vectors? Affinely independent vectors?

Lecture 10 Polyhedral Theory
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Faces and Facets
Affine Independence

Just line convex hulls, it is also possible to define affine hulls where the
weights are not required to be non-negative. Suppose X = {x1, . . . , xk}.

aff(X ) =

{ k∑
i=1

λix
i : λi ∈ R,

k∑
i=1

λi = 1

}
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Faces and Facets
Dimension of Polyhedra

Let X = {x ∈ Rn : A ≤ b}. Although, we use a ≤ sign, assume that some
or all of the rows can have an equality sign.

Definition (Dimension)

A polyhedron X is of dimension k , denoted by, dim(X ) = k, if the
maximum number of affinely independent points in X is k + 1.

What are the dimensions of the following polyhedra?
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Faces and Facets
Dimension of Polyhedra

Definition (Dimension)

X is full dimensional if dim(X ) = n.

Consider the node packing problem with feasible region given by

X = {x ∈ {0, 1}n : xi + xj ≤ 1 ∀ (i , j) ∈ E}

What is dim(Conv(X ))? Select all unit vectors and the origin.

For the same reason, dim(Conv(X )) of the knapsack polytope is n, where
X = {x ∈ {0, 1}n :

∑n
j=1 ajxj ≤ b}. Note that we can safely assume

aj ≤ b. (Why?)
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Faces and Facets
Dimension of Polyhedra

Suppose we split the constraints into inequalities and equalities.[
A≤

A=

]
x =

[
b≤

b=

]
Proposition (Dimension)

dim(X ) + rank(A=,b=) = n.

We say x is an interior point if Ai.x < bi for all i = 1, . . . ,m. In other
words, no constraint is of the equality form. Thus a polyhedron is full
dimensional iff it has an interior point.

What is dim(X ) and rank(A=,b=) for the following set of constraints?

x1 + x3 ≤ 1

x1 + x2 + 2x3 ≤ 2

x1 + x2 + x3 = 1

x1, x2, x3 ≥ 0
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Faces and Facets
Face

Definition (Face)

Given a valid inequality (w,w0) for X , a set of points
F = {x ∈ X : wx = w0} is defined as the face of X .

We say the valid inequality wTx ≤ w0 represents or defines the face F .

Can F be ∅ or X? If that is not the case, it said to be proper. If F is
non-empty, we also say that (w,w0) supports X .

To arrive at a minimal representation of a polyhedron, we can discard all
valid inequalities/faces that do not support X .

Two faces F1 and F2 are unique only if aff(F1) 6= aff(F2).

Lecture 10 Polyhedral Theory
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Faces and Facets
Facet

Definition (Facet)

A face F of X is a facet if dim(F ) = dim(X )− 1

Which of the three inequalities are faces and facets? The blue valid in-
equality is similar to x1 ≤ 4 in the earlier example.

Lecture 10 Polyhedral Theory
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Faces and Facets
Facet

Proposition

If F is facet of X , then there exists some inequality Ai.x ≤ bi
representing F .

Proposition

An face Ai.x ≤ bi which has dimension less than dim(X )− 1 is
redundant.

Proposition

A full dimensional polyhedron X has a unique (allowing scalar
multiplication) minimal representation by a finite set of linear inequality,
each of which is a facet.

Lecture 10 Polyhedral Theory
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Faces and Facets
Facet

Proposition

If X is not full dimensional, i.e., dim(X ) = n − k, k > 0, then X can be
described by k linearly independent rows of A=,b= and a set of linear
inequalities, each of which represents a facet.

Is this representation unique?

Lecture 10 Polyhedral Theory
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Faces and Facets
Example

Consider the polytope defined by the following constraints.

x1 + x3 ≤ 1

x1 + x2 + 2x3 ≤ 2

x1 + x2 + x3 = 1

x1, x2, x3 ≥ 0

Determine if the following inequalities are valid. If they are, check if the
faces defined by them are facets.

I −x1 − x2 + x3 ≤ 1

I 2x1 − 7x2 + 2x3 ≤ 2

Lecture 10 Polyhedral Theory
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Faces and Facets
Useful Valid Inequalities

For solving integer programs, the ideal valid inequalities are those which
define facets of Conv(X ). These cannot be dominated by other valid
inequalities.

Suppose for a problem, you found a valid inequality. How can you check
if it is facet inducing/defining?

I Show that dim(F ) is dim(Conv(X ))− 1. That is, show that there
are dim(Conv(X )) affinely independent points in F .

I However, determining dim(Conv(X )) can be difficult. In such cases,
we try to find facet-defining inequalities for the relaxation X . Note
that dim(Conv(X )) ≤ dim(X ). (Why?)

Lecture 10 Polyhedral Theory
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Faces and Facets
Proofs

Show that xi ≤ y is a valid inequality and a facet of the polytope

X =

{
(x, y) ∈ Rm

+ × {0, 1} :
m∑
i=1

xi ≤ my , xi ≤ 1, i = 1, . . . ,m

}

The required result can be shown by proving the following statements.

I dim(Conv(X )) = m + 1

I Fi =
{

(x, y) ∈ Conv(X ) : xi = y
}

is a facet, i.e., dim(Fi ) = m.

Lecture 10 Polyhedral Theory
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Faces and Facets
Proofs

Consider the following set points in Conv(X ).

x1 x2 . . . xm y
1 0 . . . 0 1
0 1 . . . 0 1
...

...
. . .

...
...

0 0 . . . 1 1
0 0 . . . 0 1
0 0 . . . 0 0

Are they affinely independent? Hence, dim(Conv(X )) = m + 1.

Lecture 10 Polyhedral Theory
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Faces and Facets
Proofs

Likewise for Fi =
{

(x, y) ∈ Conv(X ) : xi = y
}

, the following points are
affinely independent.

x1 x2 . . . xm y
0 0 . . . 0 0
1 0 . . . 0 1
1 1 . . . 0 1
...

...
. . .

...
...

1 0 . . . 1 1

Does this imply dim(Fi ) = m? We don’t know if there are m + 2 affinely
independent points in Fi . Hence, dim(Fi ) ≥ m.

To check if dim(Fi ) = m, we need to show Fi 6= Conv(X). (Why?)
Consider x = (0, . . . , 0) and y = 1. (x, y) ∈ Conv(X ) but (x, y) /∈ Fi .

Lecture 10 Polyhedral Theory
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Faces and Facets
Proofs

The previous exercise shows how a single inequality can be shown to be
facet defining.

We may also want to check if a given set of inequalities describe the convex
hull of the feasible region.

There are different ways of establishing this type of results. Consider one
such approach using the facility location formulation X1.

X1 =

{
(x, y) ∈ Rm

+ × {0, 1} :
m∑
i=1

xi ≤ my , xi ≤ 1, i = 1, . . . ,m

}

Show that the following X2 describes Conv(X1).

X2 =

{
(x, y) ∈ Rm

+ × R : xi ≤ y , y ≤ 1, i = 1, . . . ,m

}
Lecture 10 Polyhedral Theory
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Faces and Facets
Proofs

We know that X2 ⊆ Conv(X1). It thus is enough to show that points in
X2 with fractional y are not extreme points of X2. (Why?)

Suppose (x, y) ∈ X2 is an extreme point and fractional, i.e., 0 < y < 1.

Consider two points (0, 0) and

(
x1
y
,
x2
y
, . . . ,

xm
y
, 1

)
. Note that both

points are in X2.

(x, y) = (1− y)(0, 0) + y

(
x1
y
,
x2
y
, . . . ,

xm
y
, 1

)
However, extreme points cannot be written as the convex combination of
distinct points. Hence, it cannot be a vertex of X2.
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Lecture Outline

Lifting Valid Inequalities
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Lifting Valid Inequalities
Introduction

Lifting is a procedure for making valid inequalities stronger. This involves
including more terms in the inequalities or adjusting the coefficients.

For example, consider the following knapsack constraint

11x1 + 6x2 + 6x3 + 5x4 + 5x5 + 4x6 + x7 ≤ 19

Recall that C = {3, 4, 5, 6} is a cover. The associated valid inequality is

x3 + x4 + x5 + x6 ≤ 3

What is dim(Conv(X ))? Is the cover inequality a facet?

Augmenting the LHS with non-negative quantities will always result in a
stronger inequality. But we must ensure that it remains valid. Can we add
more terms to the LHS in the above inequality?
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Lifting Valid Inequalities
Cover Inequalities

Note that x1 and x2 have higher coefficients than that of the terms in the
above valid inequality. Hence, the following inequality is also valid for X .

x1 + x2 + x3 + x4 + x5 + x6 ≤ 3

Proposition

If C is a cover for X =
{
x ∈ {0, 1}n :

∑n
j=1 ajxj ≤ b

}
, then the extended

cover inequality ∑
j∈C

xj +
∑

j∈N\C :aj≥ai∀i∈C

xj ≤ |C | − 1

is also valid for X .

Is the extended cover inequality a facet? How about increasing the coeffi-
cients from 1?
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Lifting Valid Inequalities
Example

Consider the following inequality generated by adding only x1 to the original
cover C = {3, 4, 5, 6} .

α1x1 + x3 + x4 + x5 + x6 ≤ 3

We know that α1 = 1 yields a valid inequality. Can we increase it?

If x1 = 0, the value of α1 does not matter. Suppose x1 = 1. The
constraints can be rewritten as

6x3 + 5x4 + 5x5 + 4x6 ≤ 19− 11 = 8

α1 + x3 + x4 + x5 + x6 ≤ 3

What is the maximum value α1 can take?

Lecture 10 Polyhedral Theory
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Lifting Valid Inequalities
Example

The maximum α1 depends on the maximum of x3 + x4 + x5 + x6, which
can be found using

ζ = max x3 + x4 + x5 + x6

s.t. 6x3 + 5x4 + 5x5 + 4x6 ≤ 8

x ∈ {0, 1}

Since ζ = 1, we can fix α1 = 2. Why did we set x2 and x7 to zero in the
knapsack constraint?

In general, one can find values of αs for which the following is a stronger
valid inequality. ∑

j∈C

xj +
∑

j∈N\C

αjxj ≤ |C | − 1

Lecture 10 Polyhedral Theory
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Lifting Valid Inequalities
Procedure

Suppose j1, j2, . . . , jk is an ordering of N \C . Consider the valid inequality

αjk xjk +
k−1∑
i=1

αji xji +
∑
j∈C

xj ≤ |C | − 1

Suppose we have already lifted k − 1 variables, and want to find αjk .

ζk = max
k−1∑
i=1

αji xji +
∑
j∈C

xj

s.t.
k−1∑
i=1

aji xji +
∑
j∈C

ajxj ≤ b − ajk

x ∈ {0, 1}|C |+k−1

Set αjk = |C | − 1− ζk .
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Lifting Valid Inequalities
Procedure

Using the sequential lifting procedure, find α2 and α7 in the earlier example.

Note that the order in which variables are lifted can result in different valid
inequalities. A variable that is lifted first can have a higher coefficient.

It is possible to show that for 0–1 IPs under mild conditions, the resulting
lifted inequalities are facets.

It is also possible to lift multiple coefficients simultaneously using a similar
optimization problem instead of generating them sequentially.
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Your Moment of Zen

Source: xkcd.com
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