Transit Travel Demand Estimation

Tom Mathew

IIT Bombay
• **Goal**

 – To ensure that the mobility plan serves existing demand

 – Movement of People
 • Public Transport
 • Para-transit & Feeder Systems
 • Private Traffic

 – Movement of Goods
• **Short term strategies**

 – Minimal intervention
 • Stagger working hours

 – Traffic management
 • Signal timing

 – Route rationalization
 • Frequency optimization
• **Mid term strategies**
 – Moderate intervention
 – Enhancing Road Networks
 – Enhance Public Transport System
 • Identification of BRT routes – open system
 • Integrated route planning for buses
 – Design of route network for NMVs
• **Long term strategies**

 – Radical intervention

 – High Capacity Public Transport Systems

 – Identification of BRT routes - closed system

 – Design of full fledged feeder system including feeder buses, NMV routes

 – Re-densification of nodes & corridors along trunk routes
Travel Demand Estimation
Primary Surveys

• **Household**
 – Socio-economic
 – Activity
 – Opinion
 – Analysis
 • Vehicle ownership
 • Trip rates
Primary Surveys

• **Traffic**
 – Volume
 – Turning movements
 – Speed delay
Modeling Travel Demand

- Four Stage
 - Trip Generation
 - Trip Distribution
 - Modal Split
 - Transit
 - For each modes
 - Trip Assignment
Overview of TDM

By Survey

- Input: Base year data
- Trip generation
- Trip distribution
- Model split
- Trip assignment

Output: Base Year Link Flows

By projection

- Input: HORIZON YEAR data
- Trip generation
- Trip distribution
- Model split
- Trip assignment

Output: Horizon Link Flows

Verifiable

Output for design
TDM - Remarks

• **Travel Demand Model**
 – Build from first principles
 – Explains travel behavior
 – House hold travel characteristics
 – Projections possible
 – Limitation
 • Time and Cost intensive
 • Coarse zone to zone

• **Alternative way ?**
Transit OD Estimation

Boarding-Alighting Method

Case Study: Delhi/Mumbai
Transit OD Estimation

• **Importance**
 – Transit share
 – Need for its promotion
 – Challenge
 • Dynamic response to demand
 • Demand estimation
• **Benefits**
 – Route network design
 – Frequency setting
 – Crew scheduling
 – Performance evaluation
• **Benefits**
 – Service planning
 – Operational analysis
 – Impact analysis
 – Affordable
 • From Travel Demand Models
 • Boarding Alighting Surveys
Boarding Alighting Data
Case Study – 1 Delhi

- **OD from BA**
 - Data (RITE’s 1990’s)
 - 710 routes, 3149 buses, 37,000 trips
 - 1332 nodes, 4076 links
 - BA data for all 710 routes
 - Model
 - Fluid analogy model (Tsygalnitzky)
 - Assumption: equally likelihood for alighting
 - Constrain: minimum distance travelled
 - Limitation
 - Transfer not considered
• OD from TDM & BA
 – Travel Demand Model
 – Boarding Alighting data
 – Hybrid Demand Estimation
 • Combine TDM & BA
• **Boarding Alighting Data**
 – Fine grained from BA data
 – Accurate for direct
 – Limitation
 • Transfer trips are less reliable
 • Multi-mode, overlapping routes

• **Hybrid Demand Estimation**
 – Insights from TDM for transfer trips
 – BA gives direct trips accurately
Case Study – 2 Mumbai

- **Issue of TDM**
 - T12 is available from TDM
 - t_{ad}, t_{ae}, t_{af}?

- **Issue with BA**
 - t_{ac}, t_{ce}, t_{ef} available
 - t_{af}?
Hybrid Demand Estimation algorithm

- Initializes
 - Fluid analogy model (only direct trips)
 - Accurate when no data error, direct routes

- Transfer-Trip Substitution
 - Compute excess demand
 - Add to the transfer trips
 - Subtract from the direct trips
 - How much to adjust?
Case Study – 2 Mumbai

• **Hybrid Demand Estimation algorithm**
 – Zone O-D Heuristics
 • Adjust demand for direct routes
 • Minimizes the error between the calculated and actual *zonal* error
 • Use gradient descent
 – Boarding Alighting Heuristics
 • Adjust demand for direct routes
 • Minimize the error between the calculated and actual *passenger counts*
 • Use gradient descent
Case Study – 2 Mumbai

• **Mumbai – Transit OD**
 – 80% public transport,
 – 60% rail transport
 – 317 bus routes (6,47,000 trips)
 – 56 rail lines (7,09,000 trips)

• **Results**
 – Method BA error OD error
 – BA alg. 0.0007% 14.5%
 – HDE alg. 0.04% 0.6%
Automated Transit OD Estimation

Use of Automatic Data Collection
• Advantages
 – Cost
 – Reliable
 • Large sample size
 – Faster
 • Automation possible
 – Frequent/ Continuous
• **Automated Fare Collection**
 – Eliminates manual paper tickets
 – Variants
 • Entry only
 • Entry and exit information
 – Limitation
 • Precise stop location
ADC systems

• **Automated Vehicle Location**
 – Technologies
 • Odometer
 • GPS
 – Access
 • Real-time
 • Uploaded at garage
ADC systems

- **Automated Passenger Counts**
 - On-off at every stop
 - Time and stop location
 - Technologies
 - IR sensors
 - Video
 - Pressure mats
 - Heat sensor
Procedure

• **Data requirement**
 – Marginal values
 • BA data for all stops (sample)
 – Seed matrix
 • Known prior estimate with lined BA
 – Transfer flow
 • Obtained from AFC
Procedure

• **Step 1**
 – Sample BA data processed from ADC

• **Step 2**
 – Combine marginal and seed matrix to get one route OD

• **Step 3**
 – Use transfer flows to link all individual OD’s to system OD

• **Note:**
 – Assumptions for missing data
Destination

<table>
<thead>
<tr>
<th>Origins Route #1</th>
<th>Destinations on Route #1</th>
<th>Destinations on Route #2</th>
<th>Destinations on Route #n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Transfer OD Matrix Route #1</td>
<td></td>
<td>Transfer OD Matrix Route #1 To Route #2</td>
<td></td>
</tr>
<tr>
<td>Origins Route #2</td>
<td>Transfer OD Matrix Route #2 To Route #1</td>
<td>Non-Transfer OD Matrix Route #2</td>
<td></td>
</tr>
<tr>
<td>Origins Route #n</td>
<td>Transfer OD Matrix Route #n To Route #1</td>
<td></td>
<td>Non-Transfer OD Matrix Route #n</td>
</tr>
</tbody>
</table>

Note: Transfer flow matrices between any two route-dirs will have much lower values due to lower transfer volumes compared to non-transfer volumes. Transfer flow matrices are also more sparse, and transfers between many route-dirs are not possible.
ADC systems

• **Remarks**
 - Availability of electronic ticketing systems
 • BMTC/BEST
 - Provide transit OD
 • Continuous
 • Accurate
 • Economical
 - Proxy to total OD
Traffic Management

By

Adaptive signal Control
Traffic Signal Control

- Fixed Time Signal
- Vehicle Actuated
- Coordinated Signal
- Area Traffic Control
- Responsive
- Adaptive

35
Traffic Signal Control

- Two Popular Network Systems
 - Centralized system
 - SCOOT
 - Split, Cycle, Offset, Optimization
 - Distributed system
 - SCAT
 - Sydney Coordinated Adaptive Traffic System
SCOOT system

- **Working philosophy**
 - Upstream detection
 - Data communicated to central controller
 - It computes the timing and send to intersections

- **Limitations**
 - Communication overheads
 - Poor progression prediction
 - Calibration issues
SCATS system

- **Working philosophy**
 - Downstream detection
 - Local controller acts akin to a VA controller
 - Communicate periodically to the central controller

- **Limitations**
 - Not an optimal system
SCOOT vs. SCAT

SCOOT
- Centralized System
- Upstream detection
- Fixed traffic regions
- Fallback - fixed
- Adaptive

SCAT
- Distributed system
- Stop line detection
- Adjustable region
- Fallback - VA
- Algorithmic
Adaptive Control
Adaptive control (Isolated)

- Detector placement
 - Stop line - No demand prediction

- Input
 - Demand from every loop from every cycle

- Output
 - Green time for each phase, Cycle length and delay
General structure:

Minimize the average control delay per vehicle \(d_p(q_p, g_p, C)\) with respect to timings and demands, subject to bound constraints on green times \(g_p\) and cycle time \(C\).
Mathematical formulation

\[
\min \sum_{p \in P} d_p(q_p, g_p, C) \quad \text{(minimize total delay)}
\]

subject to:

\[
g_p \geq g^p_{\text{min}}, \quad \forall p \in P \quad \text{(lower bounds on green times)}
\]

\[
C_{\text{min}} \leq C \leq C_{\text{max}} \quad \text{(bounds on cycle time)}
\]

\[
C = \sum_{p \in P} g_p \quad \text{(definition of cycle time)}
\]

\[
g_p \in \mathbb{Z}, \quad \forall p \in P \quad \text{(green times are integers)}
\]
Delay function (HCM 2000)

\[
d = \frac{0.5C (1 - \lambda)^2}{1 - [\min (1, x) \lambda]} + 900T \left[(x - 1) + \sqrt{(x - 1)^2 + \frac{4x}{cT}} \right]
\]

\[
\lambda = \frac{g_p}{C}
\]

\[
x = \frac{q_p}{\lambda s_p} = \frac{q_p C}{s_p g_p}
\]

\[
c = \lambda s_p = \frac{g_p s_p}{C}
\]

\[
d_p = \frac{0.5C \left(1 - \frac{g_p}{C} \right)^2}{1 - \left[\min \left(1, \frac{q_p C}{s_p g_p} \right) \frac{g_p}{C} \right]} + 900T \left[\left(\frac{q_p C}{s_p g_p} - 1 \right) + \sqrt{\left(\frac{q_p C}{s_p g_p} - 1 \right)^2 + \frac{4q_p C^2}{s_p^2 g_p^2 T}} \right]
\]

45
Evaluation

Traffic Simulator (VISSIM)

- Traffic Simulation with actuated controller settings ($g_{p_{\min}}, g_{p_{\max}}$, unit extension time)
- for each phase, delay, queue length, cycle time
- VA data, detector data
- $g_{p_{\max}}$

Database

- Information Storage
- vehicle discharge and utilized green time in each phase

Com Interface

Data Processing

- sp, qp
- gp

Optimization Solver (Bonmin)

Parameter Optimization

Initial input

flow profile, road network, phase plan, simulation period
Evaluation
Evaluation

- Input demand

![Graph showing demands over time with different phases and moving averages.](chart.png)
Evaluation

- Output - Cycle

![Total Demand and Cycle Time](chart.png)
Evaluation

- Output – Green times
Evaluation

- **Output – Delays**

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Avg. Control Delay (s/veh)</th>
<th>Avg. Queue Length (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ph-1</td>
<td>Ph-2</td>
</tr>
<tr>
<td>VA (g_{max} = 45) s)</td>
<td>84.5</td>
<td>82.8</td>
</tr>
<tr>
<td>VA (g_{max} = \infty)</td>
<td>131.8</td>
<td>99.4</td>
</tr>
<tr>
<td>RLM</td>
<td>65.2</td>
<td>63.3</td>
</tr>
<tr>
<td>OPT</td>
<td>51.7</td>
<td>53.6</td>
</tr>
<tr>
<td>% red. w.r.t VA (g_{max} = 45) s)</td>
<td>38.8</td>
<td>35.3</td>
</tr>
<tr>
<td>% red. w.r.t VA (g_{max} = \infty)</td>
<td>60.8</td>
<td>46.1</td>
</tr>
<tr>
<td>% red. w.r.t RLM</td>
<td>20.7</td>
<td>15.3</td>
</tr>
</tbody>
</table>
Evaluation (Smoothening)

(a) No smoothening (OPT)
(b) 3-cycle smoothening
(c) 5-cycle smoothening
(d) 7-cycle smoothening
Adaptive Control

Summary

- Sensitive to fluctuating traffic demand
- Evaluation by traffic simulators
- Optimal use of infrastructure
- Enhances service quality
Adaptive Control

Advanced topics

- Developing for large systems
- Better delay equations
- Traffic management capabilities
Thank You, Questions?

www.civil.iitb.ac.in/tvm
tvm@civil.iitb.ac.in